Report No. FAA-RD-80-50

တ

ADA 08517

COPY

20000727245

ENGINE INLET ANTI-ICING SYSTEM EVALUATION PROCEDURE

ALLYN HEINRICH RICHARD ROSS NICK GANESAN

JANUARY 1980 FINAL REPORT

Reproduced FromDocument is available to the U.S. public through
the National Technical Information Service,
Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20590

80

101

6

6

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

D Report No. (19) 2			Page
FAA (RD (89-50)	2. Government Accession No. AD-AØ85 17	3. Recipions's Catalog Ho. 19	
4. Title and Subtitle	191405 27	and a second	-
	CVCTEN	(11) January 1980) (1	214
ENGINE INLET ANTI-ICING		6. Performing Orgenryurish Code	
EVALUATION PROCEDURE.			
		8. Performing Organization Report No.	
D) Allyn/Heinrich? Richard	Pross MA Nick Gane	san	
9. Performing Organization Name and Address	17 R033 Calls HTCK/Guild	10. Work Unit No. (TRAIS)	
GATES LEARJET CORPORATI	011	•	
P.O. Box 7707	UN	He Come of Case Man	
Wichita, Kansas 67277		(15) DOT-FA76WA-3852 W	
-	·	13. Type of Report and Parios Covered	
12. Sponsoring Agency Name and Address U.S. Department of Tran	sportstion		
Federal Aviation Admini		FINAL REPORT.	
Systems Research & Deve			·
Washington, D.C. 20590			
15. Supplementary Notes		· · · · · · · · · · · · · · · · · · ·	
× ·		· .	
Ĵ.			ł
14. Abstract The objectives of	this work were to a	levelop a procedure for predic	t-
		inlet anti-icing systems for	-
compliance with FAR 25 ice	protection require	ements without conducting flig	ht
tests in natural icing con	ditions. This must	: include consideration of wat	er
droplet impingment, collect	ion efficiency, int	ernal and external heat trans	fer
and mass transfer of the i			
The method of approac	h for developing th	ese procedures was to survey	
current analysis methods i	nvolving physical t	heory and empirical methods a	nd
		in anti-icing system performa	
		natod veina o thunon dimoneieno	ור
		icted using a three-dimensiona	1
nacelle test model to aid	in the procedure de	evelopment.	
nacelle test model to aid A typical engine-inle	in the procedure de t anti-icing system	evelopment. Was evaluated with the compu	ter
nacelle test model to aid A typical engine-inle model in a variety of icin	in the procedure de t anti-icing system g environments and	evelopment. was evaluated with the compu operational conditions and co	ter m-
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn	in the procedure de t anti-icing system g environments and el test results. C	evelopment. Was evaluated with the compu	ter m-
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne	in the procedure de t anti-icing system g environments and el test results. C l test results was	evelopment. was evaluated with the compu operational conditions and co correlation between performanc	iter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne	in the procedure de t anti-icing system g environments and el test results. C l test results was	evelopment. was evaluated with the compu operational conditions and co correlation between performanc found to have good agreement	iter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne	in the procedure de t anti-icing system g environments and el test results. C l test results was	evelopment. was evaluated with the compu operational conditions and co correlation between performanc found to have good agreement	iter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne	in the procedure de t anti-icing system g environments and el test results. C l test results was	evelopment. was evaluated with the compu operational conditions and co correlation between performanc found to have good agreement	iter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne	in the procedure de t anti-icing system g environments and el test results. C l test results was	evelopment. was evaluated with the compu operational conditions and co correlation between performanc found to have good agreement	iter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p	evelopment. was evaluated with the compu operational conditions and co correlation between performanc found to have good agreement	iter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne within the spectrum of con	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p	evelopment. a was evaluated with the compu- operational conditions and co correlation between performanc found to have good agreement practicable in the wind tunnel	ter m- e
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne within the spectrum of con 17. Key Words ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p E INLETS, LYTICAL	evelopment. a was evaluated with the compu- operational conditions and co- correlation between performanc found to have good agreement practicable in the wind tunnel	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne within the spectrum of con 17. Key Words ANTI-ICING, AIRCRAFT ENGIN	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p E INLETS, LYTICAL TESTS MATION	evelopment. a was evaluated with the compu- operational conditions and co- correlation between performanc found to have good agreement practicable in the wind tunnel New Sintement INT IS AVAILABLE TO THE PUBLIC	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne within the spectrum of con 17. Key Words ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p E INLETS, LYTICAL	evelopment. a was evaluated with the compu- operational conditions and co- correlation between performance found to have good agreement practicable in the wind tunnel was Statement ENT IS AVAILABLE TO THE PUBLIC H THE NATIONAL TECHNICAL INFO	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunn predictions and wind tunne within the spectrum of con 17. Key Words ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p E INLETS, LYTICAL TESTS MATION	evelopment. a was evaluated with the compu- operational conditions and co- correlation between performance found to have good agreement oracticable in the wind tunnel were Statement ENT IS AVAILABLE TO THE PUBLIC H THE NATIONAL TECHNICAL INFO I SERVICE, SPRINGFIELD, VA	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunne predictions and wind tunne within the spectrum of con 17. Key Words ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA METHODS, ICING WIND TUNNEL 19. Secondry Classif. (ed this report)	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p E INLETS, LYTICAL TESTS 20. Security Clease (for the person 20. Security Cleas	Average of the state of the second se	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunne predictions and wind tunne within the spectrum of con 17. Key Werds ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA METHODS, ICING WIND TUNNEL 19. Secondry Clease (. (ed this report) UNCLASSIFIED	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p E INLETS, LYTICAL TESTS DOCUME THROUG MATION 22151	evelopment. a was evaluated with the compu- operational conditions and co- correlation between performance found to have good agreement oracticable in the wind tunnel were Statement ENT IS AVAILABLE TO THE PUBLIC H THE NATIONAL TECHNICAL INFO I SERVICE, SPRINGFIELD, VA	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunne predictions and wind tunne within the spectrum of con 17. Key Words ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA METHODS, ICING WIND TUNNEL 19. Secondry Classif. (ed this report)	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p E INLETS, LYTICAL TESTS 20. Security Clease (for the person 20. Security Cleas	evelopment. was evaluated with the compu- operational conditions and co- correlation between performance found to have good agreement practicable in the wind tunnel was Sustement ENT IS AVAILABLE TO THE PUBLIC H THE NATIONAL TECHNICAL INFO I SERVICE, SPRINGFIELD, VA 21. Ma. of Pages 22. Price 142	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunne predictions and wind tunne within the spectrum of con 17. Key Werds ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA METHODS, ICING WIND TUNNEL 19. Secondry Clease (. (ed this report) UNCLASSIFIED	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p E INLETS, LYTICAL TESTS 20. Security Clease (of this pe UNCLASSIFIED	evelopment. was evaluated with the compu- operational conditions and co- correlation between performance found to have good agreement practicable in the wind tunnel was Sustement ENT IS AVAILABLE TO THE PUBLIC H THE NATIONAL TECHNICAL INFO I SERVICE, SPRINGFIELD, VA 21. Ma. of Pages 22. Price 142	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunne predictions and wind tunne within the spectrum of con 17. Key Werds ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA METHODS, ICING WIND TUNNEL 19. Secondry Clease (. (ed this report) UNCLASSIFIED	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p ditions that were p DOCUME TESTS DOCUME THROUG MATION 22151 20. Security Cleanal, (of this per UNCLASSIFIED Reproduction of completed page	evelopment. Twas evaluated with the compu- operational conditions and co- correlation between performance found to have good agreement oracticable in the wind tunnel New Sintement NT IS AVAILABLE TO THE PUBLIC H THE NATIONAL TECHNICAL INFO I SERVICE, SPRINGFIELD, VA 21. Ma. of Pages 22. Price 142 eveloptized	ter m- ie
nacelle test model to aid A typical engine-inle model in a variety of icin pared with icing wind tunne predictions and wind tunne within the spectrum of con 17. Key Werds ANTI-ICING, AIRCRAFT ENGIN EVALUATION PROCEDURES, ANA METHODS, ICING WIND TUNNEL 19. Secondry Clease (. (ed this report) UNCLASSIFIED	in the procedure de t anti-icing system g environments and el test results. C l test results was ditions that were p ditions that were p E INLETS, LYTICAL TESTS 20. Security Clease (of this per UNCLASSIFIED Reproduction of completed page	evelopment. was evaluated with the compu- operational conditions and co- correlation between performance found to have good agreement practicable in the wind tunnel was Sustement ENT IS AVAILABLE TO THE PUBLIC H THE NATIONAL TECHNICAL INFO I SERVICE, SPRINGFIELD, VA 21. Ma. of Pages 22. Price 142	ter m- ie

•

· · ·

and the second second

PREFACE

This document, No. FAA-RD-80-50, is the final report of a study conducted by the Gates Learjet Corporation to develop an improved and simplified Procedure for predicting and evaluating engine inlet anti-icing systems. All work was performed in the Advanced Design, Aerodynamics, and Propulsion Analysis departments, under the coordination of Mr. A. M. Heinrich, Program Manager. The technical analysis was performed by Messrs. R. Ross, N. Ganesan, D.W. Newtor and R. Sundquist. Development of the antiicing analysis computer programs was originally formulated by Mr. T. M. Kutty prior to his departure from the company

Appreciation is scatefully extended for the cooperation and assistance provided by cursonnel of the NASA-Lewis Research Center in the conduct of icing with tunnel tests.

iν

TABLE OF CONTENTS

1.C INTRODUCTION	Page
2.0 ANALYSIS METHODOLOGY	1-1
2.1 Aero-Thermodynamic Relationships	2-1
2.2 Computer Programs	2-2
3.0 ILING WIND TUNNEL TESTS	2-15
3.1 Wind Tunnel Facility	3-1
internatively	3-1
3.2 Model and Instrumentation 3.3 Scope of Tests	3-4
	3-7
3.4 Icing Wind Tunnel Test Procedures 4.0 CORRELATION OF RESULTS	3-14
5.0 APPLICATION OF PROCEDURES	4-1
6.0 CONCLUSIONS	5-1
7.0 RECOMMENDATIONS	6-1
APPENDICES	7-1
A. Channel Efficiency Program A.1 Flow Chart	A-1
	A-1
A.2 Input and Operation A.3 Program Listing	A-7
A.4 Function TPP Listing	A-10
A.4 Function TRP Listing A.5 Sample Input Data	A-14
A.6 Sample Output Data	A-15
A.5 Sample Output Data S. Icing Analysis Program	A-16
B.1 Flow Chart	B-1
B.2 Input and Operation	B-1
B.3 Program Listing	B-9
B.4 Function PP Listing	B-13
B.4 Function PP Listirg B.5 Sample Input Data	B-19
	B-20
8.6 Sample Cutput Data C. Corrected Test Conditions and	8-24
Analysis Results	C-1
REFERENCES	

BIBL IOGRAPHY

LIST OF ILLUSTRATIONS

		Page	
2-1	Nacelle Configuration Definition	2-5	
3-1	Test Nacelle Installation	3-4	
3-2	Typical Instrumentation Points on Nacelle Inlet Lip.	3-6	
4-1	Averaged Surface Pressure Coefficients	4-6	
4-2	Typical Measured Surface Temperature Distribution	4-8	
4-3	Average Channel Efficiency	4-10	
4-4	Comparison of Calculated and Measured Surface Temperature	4-11	
4-5	Effects cf Nacelle Lip Position on Surface Pressure Coefficient	4-13	
4-6	Effects of Nacelle Lip Position on Efficiency Distribution	4-14	
4-7	Comparison of Calculated and Measured Surface Temperature for Three Nacelle Lip Positions.	4-15	
4-8	Effects of Nacelle Angle of Attack on Surface Pressure Coefficient	4-21	
4-9	Effects of Nacelle Angle of Attack on Channel Efficiency	4-22	
4-10	Comparison of Calculated and Measured Surface Temperature for 3 Nacelle Angles of attack	4-23	
4-11	Effects of Nacelle Inlet Mass Flow on Surface Pressure Coefficient	4-24	
4-12	Effects of Nacelle Inlet Mass Flow on Channel Efficiency	4-25	
4-13	Comparison of Calculated and Measured Surface Temperature for three Nacelle inlet Mass Flows	4-26	
4-14	Effects of Internal Flow Distribution on Channel Efficiency	4-28	
4-15	Comparison of Calculated and Measured Surface Temperature for Single and Double Skin Distribution Systems	4-29	
4-16	Comparison of Calculated and Measured Surface Temperature for Two Bleed Air	4- 30	

Уİ

List of Illustrations (Cont.)

4-17	Comparison of Calculated and Measured Surface Temperature for Two Bleed Air Flow Rates.	4-32
4-18	Comparison of Calculated and Measured Surface Temperature for Different Liquid Water Content	4 - 34
4 - 19	Comparison of Calculated and Measured Surface Temperature for Different Water Droplet Diameters.	4-39

Page

LIST OF TABLES

		Page
3-1	Icing Wing Tunnel Test Schedule	. 3-8
4-1	Efficiency - Run Matrix	4-1
C-1	Summary of Dry Run Skin Temperature Prediction - 6 o'clock Position	C-1
C-2	Summary of Dry Run Skin Temperature Prediction - 9 o'clock Position	C-2
C-3	Summary of Dry Run Skin Temperature Prediction - 12 o'clock Position	C-3
C-4	Summary of Wet Run Skin Temperature Prediction - 6 o'clock Position	C-4
C-5	Summary of Wet Run Skin Temperature Prediction - 9 o'clock Position	C-5
C-6	Summary of Wet Run Skin Temperature Prediction - 12 o'clock Position	C-6

SYMBOLS AND ABBREVIATIONS

		UNITS
A/A _E	Ratio of nacelle exit flow area with plug to unrestricted flow area	-
ALT	Altitude	ft
С	Nacelle chord length	ft
C _D	Drag coefficient	-
C _D	Profile drag coefficient	-
с _L	L'ift coefficient	-
Ċ _p	Specific heat at constant pressure	Btu/(1b-⁰R)
ď	Distance along surface. Measured from inside nacelle inlet lip at aft limit of heated area. (See Figure 2-1 or 3-2).	ft
D	Drag	1ь
DCD ·	Induced drag coefficient	-
D _D	Median droplet diameter	ft
D _{DM}	Median droplet diameter	س ر
DIA	Nacelle highlight diameter	ft
DMWIH	Quantity of water impinging on the elemental area under analysis per foot circumference of the Nacelle lip.]b/(hr-ft)
DQ	Heat transfered through elemental area under analysis	s Btu/sec
DRB	Elemental runback	<pre>lb/(sec-ft²)</pre>
DRBH	Water runback per foot circumference	lb/hr-ft
DS	Streamwise length of elemental area under analysis	ft
DT _B	Drop in bleed air temperature	°R
e	Partial pressure of water vapor for saturated air	lb/ft ²
EFF	Local channel efficiency	-
e _M	Water collection efficiency	-
EVAPH	Water evaporation rate per foot circumference	lb/hr-ft
ехр	Base of Napierian logrithmic system	
FN	Thrust/engine	16
G	Acceleration due to gravity	ft/sec ²
H	Dry convective heat transfer coefficient	Btu(sec-ft ² -°R)
HORIZ	Horizontal extent of icing cloud	Statute miles

tx

PRECEDING PAGE BLANK NOT FILMED

			. ,
			· · · · ·
			· · · ·
			2
	HPH	Heat transfer coefficient	Btu/(hr-ft ²)
	IMPPH J	Water impingement rate per foot of circumference Mechanical equivalent of heat	1b/hr-ft
· . ·	с К	Evaporation fraction	ft-lb/Btu
	[×] 1	Coefficient of thermal conductivity	Btu/(sec-ft -°R)
	K ₂	Inertia parameter	-
	K _o	Impingement parameter	. .
	o K _w	Water fraction	· _
	L L	Latent heat of vaporization	Btu/1b
	LOLS	Droplet range ratio	
	LWC	Liquid water content	grams/meter ³
	M ·	Water collection rate	lb/(sec-ft ²)
	MU	Coefficient of viscosity	lb/(ft-sec)
	n	Exponent on Prandtl number	
	N1P	Engine speed	RPM
	Ρ	Pressure	1b/ft ²
i -	P _C	Local surface pressure coefficient	-
	PERC	Percent of water evaporated from section under ana	ilysis –
	P _r	Prandtl number	-
	PSDAT	Matrix of surface position-pressure coefficient data (d, P_c) (See Section A.2)	• •
	Q	Quantity of heat	Btu/sec
	R	Gas constant	(ft-1b)/(1b- ³ R)
	RB	Runback rate	1b/(hr-ft)
	RBPH	Water runback to next element per foot circumferer	nce Ib/hr-ft
	RBS	Equivalent cross-sectional area of runback ice at aft limit of heated area.	in ² /ft
	RHO	Air density	lb/ft ³
	Re	Reynalds number	•

. . .

Reft	Reynolds number per foot	1/ft	
R _e D	Reynolds number based on water droplet diameter	~	
ReLE	Reynolds number based on nacelle lip leading edge diameter (2 x R_{1F})	.	
Res	Reynolds number based on local surface velocity and distance from stagnation point to point of analysis	. 🖌	
RLE	Leading edge radius	ft	
S	Distance along surface from stagnation point to the point under consideration	ft	
S'	Fraction of the distance from the stagnation point to the limit of impingement	- ,	
s _H	Heated surface per foot circumference	ft ² /ft	
SIN	Distance along surface from stagnation point to point of analysis	ìn	
SL	Distance along surface from stagnation point to limit of impingement	ft	
s _w	Aircraft wing reference area	ft ²	
t	Temperature	٥F	
t	Nacelle thickness	ft	,
t _T	Wind tunnel total temperature	٥,٢	•
T ,	Temperature	°R	Ì
TAF	Ambient temperature	٥F	
TBF	Bleed air temperature	٥F	
TBFIN	Input bleed air temperature	٥F	. ,
TEST	Test or run number	-	×
TOC	Nacelle thickness to chord ratio	· •	
TSOAT	Matrix of surface position - surface temperature data (d, T_S) (See Section A.2)	-	
TSF	Surface temperature	٥F	
⁷ 1,2,5	Heat transfer temperature terms as defined in equations (2-33) through (2-37)	° R	• • • • •
V	Velocity	ft/sec	
VKTAS	True airspeed	knots	
V ₁	True airspeed	miles/hr	
v ₂	True airspeed	knots	•
· -	xi ya ku	•	

.

.

.

,

·

.

Aircraft weight	16
Water flow rate	1b/hr
Bleed air mass flow rate per foot circumference	lb/sec-ft
Bleed air mass flow rate	1b/min
Water catch per foot circumference	lb/sec-ft
Ratio - 1000/T	- `
Nacelle angle of attack	dėg
Angle between lip radius line to the stagnation point and the lip radius line to the point of interest.	deg

SUBSCRIPTS

W_B WBM

W_M Ζ α θ

A 🦯	Ambient	ł
В	Bleed air	
0	Free stream	
u	Upper	{
1	Lower	
OUT	Output	
CONV	Convection	
EVAP	Evaporation	
SENS	Sensible	
W .	Water	
S	Surface	,
L	Local	
IN	Input	, ,
TRAN	Transition	
LAM	Laminar	-
TURB	Turbulent	
H ₂ 0	Water	•
air	Air	
0	Reference value	
AV	Average	۰.
LE	Leading edge	'
IMP	Impingement	

xii

1.0 INTRODUCTION

Gates Learjet introduced two new aircraft, Models 35 and 36, into their product line during 1974. These aircraft are powered by Garrett-AiResearch TFE 731-2 turbofan engines and use bleed-air for thermally anti-icing engine nacelle inlet lips, wings, and horizontal tail. During development of these aircraft it was found that existing techniques for predicting antiicing system performance were either very complex or, when simplifying assumptions were made, were highly questionable in accuracy. In addition, current procedures for anti-icing system certification include a significant amount of flight testing in simulated and difficult to find natural icing conditions which is an expensive and time consuming process providing a very limited sample of the actual icing environment. Also, the validity of extrapolating data obtained from such flight tests to other FAR 25 Appendix C conditions has always remained questionable.

What has appeared to be needed is a simpler, less costly, and less time consuming technique where flight test requirements can be reduced to a minimum. To achieve this a procedure is needed which would utilize analytical prediction methods to evaluate the full scope of the icing environment and icing wind tunnel tests to confirm the method. The procedure must be sufficiently accurate and comprehensive to be accepable to the FAA, but at the same time be simple and economical enough to be widely acceptable within the industry.

Against this background but focusing on only one area of a transport type airplane, a contract, No. DOT FA76WA-3852, was granted by the FAA, Washington, D.C., to develop a procedure for predicting and evaluating the performance of engine inlet anti-icing systems for compliance ...th FAR 25 ice protection requirements. The desire was to minimize the need for conducting flight tests in natural icing conditions. The procedure was to include consideration of water droplet impingment and collection efficiency, internal and external heat transfer, and mass transfer of the impinging water. A large spectrum of environmental and operational factors were to be analyzed in development of the procedure to identify

those environmental/operational conditions which should be recommended for evaluation by the procedure. Icing wind tunnel tests were required to assist in the procedure development.

The following report describes the method of approach taken, icing wind tunnel tests conducted, and a correlation between predicted results, using the methodology, and the tunnel test results. Conclusions and recommendations are presented plus details of the computer programs developed.

2.0 ANALYSIS METHODOLOGY

Prediction of anti-icing system performance is based on a combination of aero-thermodynamic theory and empirical relationships. A summary of these methods, based on the works of many investigators, was prepared and published by the Federal Aviation Administration in 1964. Solution of the general problem of internal heat transfer and of heat and mass transfer from a wetted surface in forced convection is quite involved and tedious. The method of solution customarily involves several trial-and-error calculations that are intermediate between the final answer and the basic factors that define a particular anti-icing situation. In order to lessen the burden of this effort a digital computer program was developed to perform these calculations.

The solution desired in anti-icing calculations is for the internal heat transfer rate of thermal heat systems, the external heat transfer by convection, evaporation of surface water, and the sensible heat change of the impinging water. After determining the heat transfer characteristics, the anti-icing performance (i.e., the rate of water impinging on the surface and the rate of evaporation) can be calculated for any known set of flight and atmospheric conditions. The difference between the rate of water impinging on the surface and the rate it is evaporated is the runback rate. Knowing the run-back rate, the amount of run-back ice correspounding to the time taken to travel through the horizontal extent of the cloud is calculated.

The analysis is made using a point-by-point approach by dividing the heated area into several small segments. This method represents a more realistic evaluation because skin temperature and impingement rate gradients are generally too steep for use of average values.

1. Bowden, D.T., et. al.: "Engineering Summary of Airframe Icing Technical Data". Technical Report ADS-4, Federal Aviation Administration, March 1964.

2.1 Aero-Thermodynamic Relationships

The theoretical and empirical relationships used in calculating antiicing performance of a system are arranged into several categories for convenience. The grouping is in a sequential order of calculation; i.e., the equations presented in a particular group use the known parameters mentioned in that group plus these that are mentioned (known or calculated) in preceding groups. Various parameters are identified by symbols which are identical or similar to the variables used in the computer program. This helps to easily understand the logical development of the computer programs from a listing of their statements.

Basic-Relationships

Known parameters:

Altitude (ALT), ft Ambient Temperature (T_A) , $^{\circ}R$ True Airspeed (V_O) , ft/sec

Gas Constant, $R = 53.35 (ft-lb)/(lb- {}^{\circ}R)$

Based on the above, the following equations can be developed

Specific heat², $C_p = .2365 + 7.6 \times 10^{-6} T_A$ Btu/(lb-⁰R) (2-1) Coefficient of viscosity²

$$MU = \frac{7.475 \times 10^{-7} T_{A}^{1.5}}{T_{A} + 216}$$
 lb/(ft-sec) (2-2)

Coefficient of Thermal Conductivity³

$$K_1 = (.06944 T_A + 4.722) \times 10^{-7} Btu/(ft-sec^{\circ}R)^{-1}$$

(2-3)

 Eshbach, O.W. and Souders, M.: "Handbook of Engineering Fundamentals". Third Edition, Wiley and Sons, New York, 1974, (P.843, Table 3).

2. ibid, (P.576, Figure 4)

3. Baumeister, T.: "Standard Handbook for Mechanical Engineers". 7th Edition, McGraw-Hill, New York, 1966, (P.4-93, Table 2).

Prandtl number, $P_r = (C_p) (MU)/K_1$		(2-4)
Ambient pressure $P_A = 2116.21/ e^{[ALT/(27710098774 ALT)]}$	$1b/ft^2$	(2-5)
Density, RHO = $P_{\Lambda}/(R T_{\Lambda})$	1b/ft ³	(2-6)
Reynolds Number per foot, $R_{e_{ft}} = (RHO) (V_0)/(MU)$	1/ft	(2-7)

The equations for specific heat, coefficient of viscosity and coefficient of thermal conductivity were developed by a curve fit to the data presented in the cited references.

The ICEOFF computer routine was written to calculate some basic aircraft performance parameters and, by calling an engine performance subroutine, determined extracted bleed air data for the given conditions. Since engine performance subroutines may not always be available and the desired data is otherwise known, the engine subroutine may be bypassed and bleed air data read in directly.

Thrust/Bleed-Air Calculations

Known parameters:

Airplane weight (W), lb Airplane wing reference area (S_w), ft² Profile drag coefficient (C_{D_O}) Induced drag coefficient factor (DCD) Nacelle highlight diameter (DIA), ft

Based on the above, the following equations can be written:

Lift coefficient,
$$C_{L} = W/[\frac{RHO}{2G} V_{0}^{2} S_{W}]$$
 (2-8)

Drag coefficient,
$$C_D = C_{D_c} + (DCD) C_L^2$$
 (2-9)

Drag,
$$D = C_D \frac{RHO}{2G} V_0^2 S_W$$
 lbs (2-10)

Thrust per engine, $F_N = D/2$ lbs (for 2 engines) (2-11) Knowing ._N, ALT, V₀ and T_A, the bleed-air temperature (T_B) and mass flow rate (W_B) can be determined from engine performance data.

Impingement Calculations

The inertia parameter, K_2 , the Droplet Reynolds Number, R_{e_D} , and the water collection efficiency, E_M , are required to completely determine the rate of water catch and the region of impingement on a given airfoil shape.

Known parameters:

Chord (nacelle length) (C), ft

Thickness (t), ft

Heated surface area per foot of circumference (S_{H}) , ft^{2}/ft

Droplet diameter (D_D), ft

Liquid water content (LWC), g/m³

Acceleration due to gravity, $G = 32.174 \text{ ft/sec}^2$

Surface Pressure coefficient (P_r)

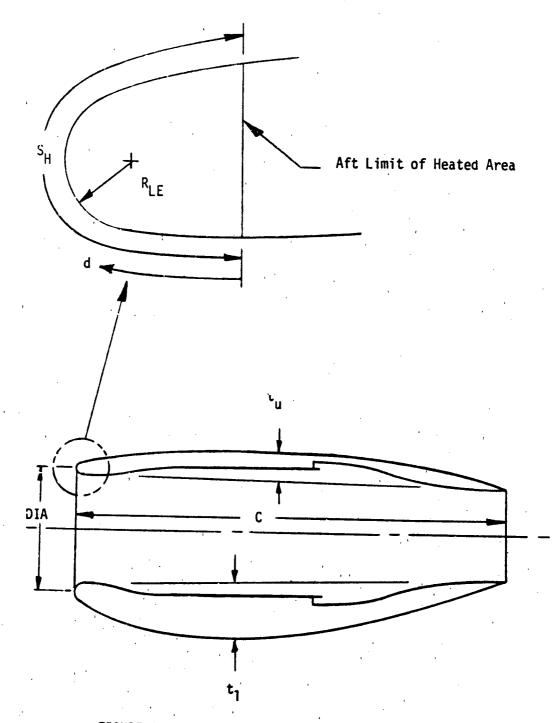
Figure 2-1 illustrates this geometry definition. Based on the above, the following relationships can be written:

Droplet Reynolds number, $R_{e_{D}} = (R_{e_{f+}})D_{D}$

(2-12)

Droplet range ratio (LOLS): droplet range is the distance the drop of water would travel before impingement if projected into still air with a given velocity

LOLS - Droplet range projected into still air Droplet range projected into still air per Stoke's Law


Physically this is an average value of drag force times $R_{e_{D}}$ for a drop projected into still air.

LOLS = .98 - .134 ln (R_{e_D}) $R_{e_D} \le 200$ (2-13) LOLS = .74 - .0887 ln (R_{e_D}) $R_{e_D} \ge 200$ (2-14)

These relations for LOLS were obtained by a curve fit of information presented by Bowden¹.

Inertia Parameter,
$$K_2 = .108 \frac{G V_0}{C(MU)} D_D^2$$
 (2-15)

1. op. cit.

K₂ is obtained by a curve fit of information presented by Bowden¹

Impingement parameter, $K_0 = K_2$ (LOLS) (2-16) K_0 is a parameter introduced by Langmuir and Blodgett⁴ so that the collection efficiency, E_M , versus the inertia parameter curves for various droplet Reynold's numbers may be collapsed into a single curve for bodies of the same geometrical shape. Collection efficiency is given by:

$$E_{\rm M} = 0$$
 $K_{\rm o} < .004$ (2-17)

$$E_{M} = .0873 [5.522 + ln K_{0}]$$
 .004 < $K_{0} < .01$ (2-18)

 $E_{M} = .08 + .31 [2 + .4342 \ln K_{0}]$ $.01 \le K_{0} < .4$ (2-19)

 E_M is the ratio of the amount of water intercepted by the airfoil to the amount of water contained in the volume of cloud swept out by the airfoil. The expressions shown for E_M are obtained by a curve fit of information presented by Bowden¹.

Water catch, $W_{M} = .623 V_{O} (LWC) \frac{t}{C} C E_{M} 10^{-4}$ lb/sec-ft (2-20) Water collection rate (average), $M_{W_{AV}} = W_{M}/S_{H}$ lb/(sec-ft²) (2-21) Water collection rate at leading edge, $M_{W_{LE}} = 2 M_{W_{AV}}$ lb/(sec-ft²) (2-22)

1. op. cit.

 Lagmuir, I. and Blodgett, K.: "A Mathematical Investigation of Water Droplet Trajectories". AAFTR 5418, Feb. 19, 1946
 op. cit. (Figure 2-9)

Water collection rate at any point due to impingement,

$$M_{W_{IMP}} = M_{W_{LE}} [1-.385(3S')^{1.75}] \quad 0 < S' \le 1/3 \ 1b/(sec-ft^2)(2-23)$$
$$M_{W_{IMP}} = 1.177 \ M_{W_{LE}} [(1-S')^{1.6}] \quad 1/3 < S' < 1 \ 1b/(sec-ft^2)(2-24)$$

Where S = distance (ft) along surface from stagnation point to the point under consideration, S' = S/S_L and S_L = S_H/2 (S_L = Distance along surface from stagnation point to limit of impingement, ft). These expressions for $M_{W IMP}$ were obtained by a curve fit of data presented by Neel⁵.

Heat Transfer Calculations

Heat transfer calculations are based on the fact that at any point on the surface, the skin temperature attains a steady value which allows equilibrium between internal and external heat flows. The formulation of the problem is based essentially on the development presented by Gray⁶ and Gelder⁷. The equations are quite lengthy and a number of simplifying assumptions and considerable manipulation reduce them to a manageable level as described in the following material.

Heat transfer in forced convection from a surface subjected to water impingement is represented by the total heat transferred by convection, evaporation, and the sensible heat change of the impinging water. An accounting is made for heat generated by friction and the kinetic energy of the water droplets. The expression for heat output can be written in several ways depending on how the various terms are grouped. Following the development of Gelder⁷:

- 5. Neel. C.G.: "A Procedure for the Design of Air-Heated Ice Prevention". NACA TN 3130, 1954. (Figure 16a)
- 6. Gray, V.H.: "Simple Graphical Solution on Heat-Transfer and Evaporation from Surface Heated to prevent Icing". NACA TN 2799, 1952.
- 7. Gelder, F.P., et. al.: "Icing Protection for a Turbojet Transport Airplane: Heating Requirements, Methods of Protection, and Performance Penalties". NACA TN 2866, 1953.

$$Q_{OUT} = Q_{CONV} + Q_{EVAP} + Q_{SENS}$$

Where:

$$Q_{\text{CONV}} = H S_{\text{H}} \left\{ T_{\text{S}} - T_{\text{A}} - \frac{v_{\text{o}}^{2}}{2GJ C_{\text{p}}} \left[1 - \left(\frac{v_{\text{L}}}{v_{\text{o}}}\right)^{2} (1 - P_{\text{r}}^{\text{n}}) \right] + .622 \frac{LK_{\text{w}}}{C_{\text{p}}} \left(\frac{e_{\text{D}} - e_{\text{L}}}{P_{\text{L}}}\right) \right\} \qquad \text{Btu/sec-ft} \qquad (2-26)$$

$$Q_{EVAP} = 0.622 \text{ H} \frac{S_{H}LK_{W}}{C_{p}} \left(\frac{e_{S} - e_{D}}{P_{L}}\right) \qquad Btu/sec-ft \qquad (2-27)$$

$$Q_{\text{SENS}} = S_{\text{H}} M_{\text{W}} C_{\text{P}_{\text{W}}} \left(T_{\text{S}} - T_{\text{A}} - \frac{V_{\text{O}}^2}{2 \text{ GJC}_{\text{P}_{\text{W}}}} \right) \quad \text{Btu/sec-ft} \quad (2-28)$$

Substituting equations (2-26), (2-27) and (2-28) into (2-25) and rearranging gives:

$$P_{OUT} = S_{H} H \left\{ \left(T_{S} - T_{A}\right) \left(1 + M_{W} C_{P} / H\right) - \frac{V_{o}^{2}}{2GJ C_{p}} \left[1 - \left(\frac{V_{L}}{V_{o}}\right)^{2} \left(1 - P_{r}^{n}\right) + \frac{M_{W} C_{p}}{H}\right] + \frac{0.622 L K_{W}}{C_{p}} \left[\frac{e_{S}}{P_{L}} - \frac{e_{L}}{P_{L}}\right] \right\}$$
Btu/sec-ft (2-29)

2-8

(2-25)

In order to eliminate the lengthy calculation involved in the solution of the equation (2-25), the following set of assumptions were made:

- a. The flow over the body being almost adiabatic, the local stream vapor pressure can be represented by⁶:
- $e_L = e_A P_L/P_A$ 1b/ft² (2-30) b. The local velocity and pressure may be related by the incom-

pressible dry air relation⁵:

$$V_{L} = \left[V_{0}^{2} - \frac{2G}{RHO_{A}}(P_{L} - P_{A})\right]^{5}$$
ft/sec (2-31)

c. The exponent on the Prandt number is chosen as .5 corresponding to the conservative case of laminar flow rather than 1/3 corresponding to the case of turbulent flow.

- d. Radiation is small and is neglected.
 - e. Conduction along the skin is neglected because the thickness is small and the conduction is small compared to convection.
- f. The specific heat of water at constant pressure, C_p is
 1 Btu/(lb °R)
 W

With the use of the above assumptions, the equations can be combined and reduced to the final form⁷:

$$D_{OUT} = H S_{H} \left\{ (T_{s} - T_{A}) (1 + M_{w}/H) - V_{o}^{2} \left(P_{r}^{.5} + M_{w} Cp/H \right) / 2GJC_{p} + 0.622 \frac{LK_{w}}{Cp} \left(\frac{e_{S}}{P_{L}} - \frac{e_{A}}{P_{A}} \right) + R T_{A} \left(1 - P_{r}^{.5} \right) \left(1 - P_{L}/P_{A} \right) / JC_{p} \right\} Btu/sec-ft (2-32)$$

- 6. op. cit.
- 7. op. cit.

From (2-32) the following temperature terms can be obtained⁶:

 $T_1 = (T_s - T_A) (1 + M_w/H)$ $T_2 = V_0^2 (P_r^{.5} + M_w Cp/H)/2GJ C_p$ (2-34)0R

°R

(2-23)

$$T_3 = 0.622 L(e_S/P_L)/C_p$$
 °R (2-35)

$$T_4 = 0.622 L(e_A/P_A)/C_p$$
 °R (2-36)

$$T_5 = RT_A (1-P_r^{.5})(1-P_L/P_A)/JC_P$$
 °R (2-37)

Equation (2-32) can then be written as:

$$Q_{0UT} = H S_{H} \begin{bmatrix} T_1 - T_2 + K_w (T_3 - T_4) + T_5 \end{bmatrix}$$
 Btu/sec-ft (2-38)

The analytical procedure developed by Gray^6 defines the terms T_3 and T_4 as follows:

$$T_3 = 2760 e_S / P_L$$
 ^oR (2-39)
 $T_A = 2760 e_A / P_A$ ^oR (2-40)

Where L and C were assumed to be 1066 Btu/1b and 0.24 Btu/(1b- ^{O}R) respectively and e_s , e_A are partial pressures of water vapor (corresponding to saturated air unless otherwise noted), at surface and ambient conditions, respectively. Curves of these values, good for a wide range of temperature, were presented by Gray⁶. However for computer use, a curve fit to a psychrometric chart vapor pressure line presented in Eshbach² is used for

$$e_{S} \text{ and } e_{A}$$
.
 $e_{S}, e_{A} = 144 \exp (A + BZ + CZ^{2} + DZ^{3} + EZ^{4}) \ 1b/ft^{2}$ (2-41)

Where:

exp is the base of the Napierian logarithm system

 $Z = \frac{1000}{T}$, where T is static temperature, ^oR

and,

6. op. cit.

op. cit. 2.

If: T ≤ 491.688	If: 491.688 <t≤671.688< th=""><th>If: T>671.688</th></t≤671.688<>	If: T>671.688
Ice	Water	Vapor
A = +19.598997	A = +13.435296	A = +16.825544
B = -10.431025	B = -5.0988424	B = -14.213106
C = -0.27559673	C = -1.6896174	C = +7.5567694
D = +0.039494393	D = +0.17829154	D = -4.0151569
E = 0	E = 0	E = +0.71697364

Additional parameters that are required for completing the calculations are latent heat of vaporization, L, evaporation fraction, K, elemental runback rate, DRB, water collection rate, M_W and the change in bleed air temperature along the heated surface.

The latent heat of vaporization for water is represented by:

 $L = 1348.21 - 0.5620 T_{S} 460^{\circ}R \le T_{S} \le 100^{\circ}R$ Btu/lb (2-42) This relation was developed by a curve fit to information prepared by the SAE⁸.

The evaporation fraction is defined as:

 $K = (T_3 - T_4) H/L M_W$ (2-43)

The value of K depends on equilibrium conditions and is solved by iteration during the calculation.

The elemental runback rate is:

$DRB = (1-K) M_{W}$	$lb/(sec-ft^2)$	(2-44)
For the succeeding element the water collection rate	is:	
$M_{W} = M_{WIMP}$ (at that point) + DRB	lb/(sec-ft ²)	(2-45)
The drop in bleed air temperature is:		
	00	(2-46)

 $DT_B = Q_{out} / (W_B C_{P_B})$

This leads to the necessity of calculating the heat transfer coefficients.

8. "SAE Aerospace Applied Thermodynamics Manual". Second Edition, Society of Automotive Engineers, Inc., New York, Oct. 1969. (F. 165, Fig. 2C-1).

Internal Heat Transfer

Known parameters:

Bleed-air flow rate (W _B), lb/sec-ft		
Bleed-air temperature (T _R), °R		
Skin temperature (T_{S}) , $^{\circ}R$		·
Local channel efficiency (EFF)	· · · ·	
Based on the above the following _quations can be	written:	,
Specific heat of bleed-air ² ,	· .	
$C_{P_B} = .2365 + 7.6 \times 10^{-6} T_B$	Btu/(1b-°R)	(2-47)
Heat input, $Q_{IN} = W_B(C_{P_B}) (T_B - T_S)$	Btu/sec-ft	(2-48)
External Heat Transfer		
Known parameters:		

Leading-edge radius (R_{LE}), ft

Local pressure coefficient (P_c)

Mechanical equivalent of heat, J = 778 ft-lb/Btu

The following relationships can now be developed:

Reynold's number in the leading-edge region,

Rele = ReftRif	(2-49)

- Local velocity, $V_{L} = V_{0} (1-P_{c})^{.5}$ (2-50)
- Reynolds number at any point, $R_{e_{s}} = R_{e_{ft}} S V_{L} / V_{o}$ (2-51)

The dry air convective heat transfer coefficient is determined by the method of Gelder⁷. In the region of the stagnation point, an empirical equation for a cylinder is used:

$$H = \left[0.57 \kappa_1^{9.4} R_{eLE}^{5} / R_{LE} \right] \left[1 - (\theta/90)^3 \right] \quad Btu/(sec-ft^2 - \circ R) (2-52)$$

2. op. cit.

7. op. cit.

where Θ is the angle in degrees from the stagnation point to the point of interest. This equation is used up to Θ = 25 degrees. Beyond Θ = 25 degrees, a flat plate laminar flow equation is used:

 $H = 0.332 K_1 P_r^{1/3} P_r^{1/3} R_{eS}^{-5}/S \qquad Btu/(sec-ft^2-R) (2-53)$

where S is the distance along the surface from the stagnation point to the point of interest. This equation is used up to a Reynolds number of 2×10^5 . From $R_{e_S} = 2 \times 10^5$ up to the point where $R_{e_S} = 1.2 \times 10^6$ is treated as a transition region and for R_{e_S} greater than 1.2×10^6 is considered fully turbulent flow. For a flat plate in turbulent flow:

H = 0.0296 K₁ $P_r^{1/3} R_{e_s}^{.8}/S$ Btu/(sec-ft²-°R) (2-54)

For the transition region a linear variation of the heat transfer coefficient with Reynolds number between laminar flow and turbulent flow is used. If the computed Reynolds number indicates a transitic. flow region, the following procedure is used.

1. Determine the position on the surface, S_{TRAN} , where $R_{e_S} = 2 \times 10^5$ and a compute a laminar flow heat transfer coefficient for conditions at that point using equation (2-53), H_{LAM}

2. Determine the position on the surface, S_{TURB} where $R_{eS} = 1.2 \times 10^6$ and compute a turbulent flow heat transfer coefficient for conditions at that point using equation (2-54), H_{TURB}

 Calculate the heat transfer coefficient for the point of interest from:

$$H = H_{LAM} + \frac{H_{TURB} - H_{LAM}}{1 \times 10^6} (R_{e_s} - 2 \times 10^5)$$
 Btu/(sec-ft²-°R) (2-55)

The local static pressure is determined from the incompressible relation.

$$P_{L} = P_{A} + \frac{RHO}{2G} V_{O}^{2} P_{C}$$
 1b/ft² (2-56)

Channel Efficiency

Dry air test data is used in determining an effective anti-icing efficiency. This is a measure of the effectiveness of the hot bleed air in heating the external surface. For dry air, M_W and K_W are zero and (2-38) reduces to:

$$Q_{out} = H S_{H} (T_{1} - T_{2} + T_{5})$$
 Btu/sec-ft (2-57)

and

$$T_1 = T_S - T_A$$
 °R (2-58)
 $T_2 = \frac{2}{0} P_r^{.5} / 2GJ C_p$ °R (2-59)

 ${\rm T}_5$ is the same as given in (2-37).

The heat supplied, Q_{IN} , can be computed from (2-48) and the channel efficiency is then given by:

$$Eff = Q_{out}/Q_{in}$$

(2-60)

2.2 COMPUTER PROGRAMS

The Channel Efficiency Computer program, CHANEFF, is described in Appendix A. A flow chart, a program listing, an example of the input format and an example of the output are presented. In a similar fashion the icing analysis computer program, ICEOFF, is described in Appendix B.

Included in Appendix A is a listing of a function subprogram, TRP, that is called by both CHANEFF and ICEOFF to interpolate the input data arrays for values of pressure coefficient, surface temperature and channel efficiency intermediate to those supplied. Included in Appendix B, is a listing of a function subprogram, PP, that is used to compute the partial pressure of water vapor at saturation temperature.

3.0 ICING WIND TUNNEL TESTS

Icing wind tunnel tests were conducted to provide experimental data that would assist in the development of evaluation procedures for engine inlet anti-icing systems. The scope of testing was selected to cover a wide spectrum of environmental conditions that were practicable in the wind tunnel described in the following section.

3.1 Wind Tunnel Facility

Through sponsorship by the Federal Aviation Administration, approval was obtained for use of the NASA Lewis Research Center Icing Research Tunnel (IRT) located at Cleveland, Ohio. This facility is a closed return tunnel having a 6 x 9 foot (1.83 M x 2.74 M) test section. Performance capabilities are outlined in the following table:

Airspeed: 260 KTAS (483 KM/Hr) maximum without model installed Air Temperature: $-22^{\circ}F(-30^{\circ}C)$ to $32^{\circ}F(0^{\circ}C)$

Liquid Water Content: Approximately 0.5 to 2.0 g/m^3

Median Droplet Size: 11 to 20 µm

Airspeed capability with the TFE731 nacelle installed was approximately 240 KTAS.

Air temperature in the tunnel was measured by three (3) total temperature thermocouples calibrated by NASA-Lewis personnel and located at the upstream corner from the test section. These were located on cross-bars attached to the turning vanes and sensed air temperature at the top, center, and bottom in the tunnel cross section. Tunnel temperatures were monitored by both the tunnel and the refrigeration plant operators and adjusted to match as closely as possible.

Test section static (ambient) temperature was obtained by subtracting from the measured total temperature the stagnation temperature increment as follows:

$$t_A = t_T - \frac{v^2}{2G C_p J}$$

(3-1)

3-1

Where: V = true airspeed, ft/secG = acceleration of gravity, 32.174 ft/sec^2 C_{p} = mean specific heat of air, 0.24 Btu/(1b - $^{\circ}R$) J = meachanical equivalent of heat in engineering units, 778.2 ft-1bs/Btu

Liquid water content (LWC) capabilities of the tunnel are limited to some extent by an interdependence on airspeed and median droplet size because higher LWC is achievable only at the lower airspeeds. Median droplet size, in an approximately Langmuir "D" size distribution, is somewhat dependent on LWC and airspeed in that larger median droplet sizes cannot be obtained at a combination of high LWC and high airspeed.

A desired combination of LWC and median droplet size is obtained by setting tunnel controls for the spray system air and water pressures. To determine these pressures the following method was provided by NASA:

Given: LWC,
$$D_{DM}$$
, V (e.g., V₁ or V₂)
Obtain:
W₁ = 11.667 LWC(V₁) (3-2)

$${}^{P}_{H_{2}0} {}^{-P}_{air} = \frac{1}{38.7} \left(\frac{W_{w}}{77}\right)^{2}$$
(3-3)

$$P_{air} = \frac{1.13[43.9 - (4V_2)^{.5}] [38.7(P_{H_20} - P_{air})^{.5}] (\frac{T_{air}}{536})^{.5}}{D_{DM} - 0.006(V_2) - 4} - 11.3 (3-4)$$

$$P_{H_20} = (P_{H_20} - P_{air}) + P_{air}$$
 (3-5)

Where: LWC = liquid water content, g/m^3 D_{DM} = median droplet size, μm V_1 = mph true airspeed V_2 = knots true airspeed W_w = water flow rate, lb/hr P_{H_20} = water pressure, lb/in² gage P_{air} = air pressure, lb/in² gage T_{air} = 180 + 460 = 640°R

The tunnel spray system water and air pressures were calibrated by NASA-Lewis personnel.

3.2 Model and Instrumentation

The wind tunnel model employed for icing tests was adapted from a full-scale nacelle for the Garret-AiResearch Corporation TFE731-2 turbofan engine. Modification to the nacelle included incorporation of a roll-formed and welded steel duct with flanges for mounting of fore and aft nacelle bodies and the wrap cowls. A strut assembly was fabricated from square steel tubes which was then welded to the duct and to mounting plates for installation on the wind tunnel turntable. The nacelle was mounted on its side in the tunnel, as shown in Figure 3-1, to facilitate angle-of-attack changes by rotation of the turntable.

An aluminum plug was attached to the nacelle exit for certain tests to provide a variation of air mass flow through the nacelle and consequently a shift of the stagnation point on the inlet lip. The plug was adjustable in fore and aft position through use of threaded attachment rods. The forward cone of the plug was electrically heated to prevent icing.

Instrumentation was provided on the nacelle inlet lip to measure outside surface temperatures and static pressures along three chordwise positions* located at radials of 6, 9, and 12 o'clock. Figure 3-2 illustrates typical instrument positions on the lip. These positions are relative to nacelle orientation as installed on the aircraft. In the wind tunnel, with the nacelle mounted on its side, the 12 o'clock position faced towards the control room and the 9 o'clock position was on the top. At each radial position thermocouples and pressure aps were separated circumferentially by approximately two (2) inches. Pressure tubing and thermocouple wires were routed inside the lip chamber in order to present a smooth exterior lip surface.

Hot air mass flow provided to the inlet lip heat distribution system was supplied by a gas-heated tunnel supply system. Air mass flow was measured with a calibrated orifice located outside and beneath the tunnel test section. From there the hot air was ducted up through the test section turntable, into the forebody of the nacelle, and then into the inlet lip anti-icing system. Temperature and pressure of the hot air entering the anti-icing system were measured with total temperature and pressure probes.

Air temperature was controlled by a NASA provided Brown Recorder/ Controller which regulated a natural gas fired air heater. Air pressure was controlled by a NASA provided pneumatic servo valve which adjusted a remote pressure regulator.

* The turbofan engine used with this nacelle produced neglible inlet swirl.

t2 P2 tl t3 P3 P1 t4 P4 t5 P5 t6 Piccolo P6 P29 Tube t7 P7 P8 t8 t29 **P9** t9 P10 **t10** P11 t11 P12 Ľ12 Figure 3-2 Typical Instrumentation Points on Nacelle Inlet Lip -6 O'clock Position 3-6

All pressures and temperatures on the model, tunnel airspeed, and the heated air flow provided to the model were measured and recorded with the following contractor supplied equipment:

- a. Pressures were measured using a scanning valve and pressure transducers.
- b. Temperatures were measured using iron-constantan thermocouples, a 150°F temperature controlled reference, and amplifier.
- c. Electrical outputs from pressure transducers and thermocouples were measured by a Hewlett Packard 3455A digital micro-voltmeter with an accuracy of $\pm(0.007\%)$ of reading +4 digits) in the 0.1 volt range.
- d. Test data from the voltmeter were further processed with a Hewlett-Packard 9825A desk-top digital computer to apply instrument calibrations, convert voltmeter outputs to engineering units, calculate tunnel airspeed and hot air mass flow, annotate output, record data on magnetic cassette tape, and print outputs on paper tape.

Calibration of contractor supplied equipment was accomplished prior to the icing tunnel tests. This equipment included all instrumentation employed to measure model temperatures, pressures, tunnel air speed, pressure altitude, and hot air bleed mass flow rate. Tunnel air speed was obtained with an existing pitot-static-probe installed in the test section. Total and static pressures were picked off the tunnel plumbing system for measurement by contractor instrumentation.

3.3 Scope of Tests

The scope of tests conducted, listed in Table 3-1, were performed over a period of six weeks. The conditions shown in Table 3-1 were set as test objectives and were not always what was achieved during this test. Actual test conditions are presented in Appendix C. Installation and check-out of the test model and instrumentation required four days.

TABLE 3-1. ICING WIND TUNNEL TEST SCHEDULE

Dry Air Runs - Configuration A*

NOTE:	Conditions shown are test objectives.	Corrected test conditions
	are shown in Appendix C.	•

Run No.	t _n . (⁵ r)	W _B (16/min)	D _{DM}	LWC (g/m ³)	t _T (°F)	V <u>(KIAS)</u>	Spray Time (min.)	
1A	350	12		•••	30	225		
2A	350	15			30	225	**	
3A .	400	12		, .	30	225		
4A	400	15			30	225	an an	•
5A	450	12			30	225		
6A	450	15		 ,	30	225		
7A	350	12			14	225	Au Au	
8 8	350	15			14	225	**	
9A	400	12		- -	14	225	40 MP	×
10A	400	15			., 14	225		
11A	450	12			14	225	~*	
12A	450	15		-	14	225	**	
13A	350	12			-4	150		•
14A	350	15	-		-4	150		•
15A	400	12		· · ·	-4	150		v
16A	400	15		-	-4	150		· .
17A	450	12			-4	150	••	• •
18A	450	15			-4	150	**	
19 A	350	12			-15	200	••	
20A	350	15		-	-15	200	•	
						•		

* Single skin inlet lip configuration.

3-8

. 1

Dry Air Runs - Configuration A (Cont):

Run No.	t _₿ (°F)	W _B (1b/min)	DM <u>um</u>	LWC (g/m ³)	t _T (°F)	V <u>(KIAS)</u>	Spray Time (min.)
21A	400	12			-15	200	
22A	400	15			-15	200	
23A	450	12			-15	200	,
24A	450	15	, 		-15	200	
25A-2	8A (Not	used)				;	
29A**	400	12	• -		14	225	
30A**	400	12		· •••	·14 .	225	
31A†	350	12			14	225	$ \alpha = -2$
32A†	350	12			14	225	a = -4

3-9

** Variable stagnation point using nacelle exit plug.

t Variable nacelle angle of attack conditions.

			- Jui ui	ION A				
	NOTE:	Conditions are shown	shown in Appe	are test ndix C.	objectiv	es. Corre	cted test c	onditions
•	<u>No.</u> (°F) <u>(1b/mir</u>		<u>m (g/m</u>			Time	
		**			30	225		• . '
			15	0.78	30	- 225		
			15	0.78	30	225		
			15	0.78	30	225		
			15	0.78	30	225		
		' .	15	0.78	30	225		
			. 15	0.6	14	225		. к . Ч
			15	0.6	14	225		
				0.6	14	225		• •
		·		0.6	14	225		
				0.6	14	225		
· .		r		0.6	14	225		
		•		1.72	-4	150	2.0	
				1.72	-4	150	2.0	· · ·
	-	,		1.72	-4	150		· · ·
,					-4	150	2.0	
	•				-4	150	2.0	
78A					-4	150	2.0	
79 A					-15	200	2.0	
80A	•				-15	200	2.0	а 1. а. 7 1. а. 7 1.
81A	,	• • · '	, '		-15	200	2.0	· ·
	•		دں .	1.28	-15	200	2.0	
			· · · ·	3-10				
	6 6 6 6 6 7 6 8 6 9 7 7 4 8 7 7 4 7 7 4 7 7 4 7 7 4 7 7 4 7 7 4 7 7 4 7 7 4 7 7 4 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 7 8 7	Run tenersion 60A 350 61A 350 61A 350 62A 400 63A 400 64A 450 65A 350 67A 350 67A 350 68A 400 69A 400 70A 450 71A 450 72A 350 73A 350 74A 400 75A 450 77A 450 77A 350 78A 350 79A 350	Are shown No. t B WB Mo. (°F) (1b/mi) 60A 350 12 61A 350 12 61A 350 15 62A 400 12 63A 400 12 63A 400 15 64A 450 12 65A 450 15 66A 350 12 67A 350 15 68A 400 12 69A 400 15 70A 450 12 71A 450 15 72A 350 12 73A 350 12 73A 350 15 74A 400 12 75A 400 15 76A 450 15 76A 450 15 75A 400 15 75A 450 15 78A 350 15 79A	NOTE:Conditions shown are shown in Appe Run t_B W_B D_D $NO.$ $(^{\circ}F)$ $(1b/min)$ 11 $60A$ 350 1211 $61A$ 350 1515 $62A$ 400 1215 $63A$ 400 1515 $63A$ 400 1515 $64A$ 450 1215 $65A$ 450 1515 $66A$ 350 1215 $67A$ 350 1515 $69A$ 400 1515 $70A$ 450 1215 $71A$ 450 1215 $72A$ 350 1220 $73A$ 350 1520 $74A$ 400 1220 $75A$ 450 1720 $76A$ 450 1520 $78A$ 350 1520 $79A$ 350 1520 $80A$ 400 1220 $80A$ 400 1220	Run t_B ($^{\circ}F)$ W_B ($1b/min$) D_{DM} $\pm m$ LWC (g/m)60A35012150.7861A35015150.7861A35015150.7862A40012150.7863A40015150.7864A45012150.7865A45015150.7866A35012150.667A35015150.668A40012150.669A40015150.670A45012150.671A45015150.672A35012201.7273A35015201.7275A40015201.7277A45015201.7278A35012201.2880A40012201.2881A40012201.28	NOTE: Conditions shown are test objectiv are shown in Appendix C.Run t_B W_B D_{DM} LWC t_T No. (^{0}F) $(1b/min)$ μm (g/m^3) (^{0}F) 60A35012150.783061A35015150.783062A40012150.783063A40015150.783063A40015150.783064A45012150.783065A45012150.61467A35015150.61468A40012150.61469A40015150.61470A45012150.61474A40012201.72-475A40015201.72-475A45011201.72-475A35012201.72-475A35012201.72-475A35015201.72-475A35012201.72-475A35015201.72-475A35015201.72-475A35015201.28-1580A40012201.28-15 <tr< td=""><td>NOTE: Conditions shown are test objectives. Correare shown in Appendix C. $\frac{Run}{No.}$ $\begin{pmatrix} 0 \\ F \end{pmatrix}$ $\begin{pmatrix} 1b/min \end{pmatrix}$ $\frac{1m}{\mu m}$ $\begin{pmatrix} 1g/m^3 \end{pmatrix}$ $\begin{pmatrix} 0 \\ F \end{pmatrix}$ $\begin{pmatrix} V \\ (KIAS) \\ (KIAS) \\ (KIAS) \\ (C = F)$ $60A$ 350 12 15 0.78 30 225 $61A$ 350 12 15 0.78 30 225 $62A$ 400 12 15 0.78 30 225 $63A$ 400 15 15 0.78 30 225 $63A$ 400 15 15 0.78 30 225 $64A$ 450 12 15 0.78 30 225 $65A$ 450 12 15 0.6 14 225 $66A$ 350 15 15 0.6 14 225 $66A$ 400 12 15 0.6 14 225 $67A$ 350 12 20 1.72 -4 150 $70A$ 450 15 2</td><td>NOTE: Conditions shown are test objectives. Corrected test c are shown in Appendix C.Run$\frac{t_B}{(^{\circ}F)}$$\frac{W_B}{(1b/min)}$$\frac{D_{DM}}{Lm}LWCt_T$VSprage Time60A35012150.78302254.6361A35015150.78302254.6362A40012150.78302254.6363A40015150.78302254.6364A45012150.78302254.6366A35012150.78302254.6366A35012150.66142254.6365A45015150.6142254.6366A35012150.6142254.6369A40012150.6142254.6369A40015150.6142254.6370A45012150.6142254.6371A45015150.6142254.6374A40012201.72-41502.074A40012201.72-41502.075A40015201.72-41502.075A40015201.72-41502.0<t< td=""></t<></td></tr<>	NOTE: Conditions shown are test objectives. Correare shown in Appendix C. $\frac{Run}{No.}$ $\begin{pmatrix} 0 \\ F \end{pmatrix}$ $\begin{pmatrix} 1b/min \end{pmatrix}$ $\frac{1m}{\mu m}$ $\begin{pmatrix} 1g/m^3 \end{pmatrix}$ $\begin{pmatrix} 0 \\ F \end{pmatrix}$ $\begin{pmatrix} V \\ (KIAS) \\ (KIAS) \\ (KIAS) \\ (C = F)$ $60A$ 350 12 15 0.78 30 225 $61A$ 350 12 15 0.78 30 225 $62A$ 400 12 15 0.78 30 225 $63A$ 400 15 15 0.78 30 225 $63A$ 400 15 15 0.78 30 225 $64A$ 450 12 15 0.78 30 225 $65A$ 450 12 15 0.6 14 225 $66A$ 350 15 15 0.6 14 225 $66A$ 400 12 15 0.6 14 225 $67A$ 350 12 20 1.72 -4 150 $70A$ 450 15 2	NOTE: Conditions shown are test objectives. Corrected test c are shown in Appendix C.Run $\frac{t_B}{(^{\circ}F)}$ $\frac{W_B}{(1b/min)}$ $\frac{D_{DM}}{Lm}$ LWC t_T VSprage Time60A35012150.78302254.6361A35015150.78302254.6362A40012150.78302254.6363A40015150.78302254.6364A45012150.78302254.6366A35012150.78302254.6366A35012150.66142254.6365A45015150.6142254.6366A35012150.6142254.6369A40012150.6142254.6369A40015150.6142254.6370A45012150.6142254.6371A45015150.6142254.6374A40012201.72-41502.074A40012201.72-41502.075A40015201.72-41502.075A40015201.72-41502.0 <t< td=""></t<>

Wet Air Runs - Configuration A

. 1

,

. .

n Na series

Run No.	t _B (°F)	W _B (16/min)	DDM µm	LWC (g/m ³)	t _T (°F)	V (KIÁS)	Spray Time (min.)
82A	450	12	20	1.28	-15	200	2.0
83A	450	15	20	1.28	-15	200	2.0
84A-9	94A (not	t used)					
95A*	400	12	15	0.6	14	225	4.63
96A*	400	12	15	0.6	14	225	4.63
97A**	350	12	15	0.6	14	225	$4.63 \alpha = -2^{\circ}$
98A*1	. 350	12	15	0.6	14	225	4.63 $\alpha = -4^{\circ}$

Wet Air Runs - Configuration A (Cont):

Variable stagnation point.

Variable nacelle angle of attack. Note: These two conditions were not run due to lack of time in tunnel schedule.

Dry Air Runs - Configuration B*

NOTE: Conditions shown are test objectives. Corrected test conditions are shown in Appendix C.

Run No.	t _B (°F)	W _B (1b/min)	D _{DM}	LWC (g/m ³)	t _T {°F}	V (KIAS)
358	350	12	~~		30	225
36B	350	15	~ ~		30	225
378	400	12	~~	 ,	,30	225
38B	400	15	~~	÷	30	225
39B	450	12	~ ~		30	225
40B	450	15			30	225
418	350	12			14	225
42B	350	15	~~ `,		· 14 ·	225
43B	400	12			14	225
44B	400	15			14	225
45B	450	12			14	225
46B	450	15			14 .	225
473-	52B (no	t used)			•.	
53B	350	12		'	-15	200
54B	350	15			-15	200
55B	400	12			-15	200
56B	400	15		, 	-15	200
578	450	12		~-	-15	200
58B	450	15		4	-15	200
* Do	puble sk	in inlet 1	ip confi	guration.	1 .	•

Wet Air Runs - Configuration B

	an		ppendry				
Run No.	t _B (°F)	W _B (1b/min)	D _{DM}	LWC (g/m ³)	t _T (°F)	V (KIAS)	Spray Time (min.)
100B	350	12	15	0.78	30	225	4.63
101B	350	15	-15	0.78	30	225	4.63
102B	400	12	15	0.78	30	225	4.63
103B	400	15	15	0.78	30	225	4.63
104B	450	12	15	0.78	30	225	4.63
105B	450	15	15	0.78	30	225	4.63
106B	350	12	15	0.6	14	225	4.63
107B	350	15	15	0.6	14	225	4.63
108B	400	12	15	0.6	. 14	225	4.63
1095	400	15	15	0.6	14	225	4.63
110B	450	12	15	0.6	14	225	4.63
111B ·	450	15	15	0.6	14	225	4.63
112B	350	12	20	1.28	-15	200	2.0
113B	350	15	20	1.28	-15	200	2.0
114B	400	12	20	1.28	-15	200	2.0
115B	400	15	20	1.28	-15	200	2.0
1165	450	12	20	1.28	-15	200	2.0
117B	450	15	20	1.28	-15	200	2.0

NOTE: Conditions shown are test objectives. Corrected test conditions are shown in Appendix C.

3.4 Icing Wind Tunnel Test Procedures

Dry air testing was conducted prior to icing tests to determine the inlet lip skin temperature and surface static pressure profiles. Various combinations of tunnel airspeed, tunnel temperature, hot air bleed mass-flow rate and temperature, and nacelle angle-of-attack, as indicated in Table 3-1, were run with dry air conditions. Following the dry runs, wet-air tests were conducted for the same conditions except that cloud characteristics were simulated using the tunnel water spray system.

The procedure employed during dry air runs is described as follows:

a. Start tunnel and set at idle speed.

b. Start tunnel cool-down.

- c. When tunnel has reached the approximate temperature desired, increase airspeed to test condition and re-adjust tunnel temp-ature.
- d. While (c) is in progress, fire air-bleed gas heater.
- e. Adjust air heater temperature and bleed-air pressure to obtain desired mass flow rate and temperature at entrance to nacelle inlet lip anti-icing system.
- f. When all conditions are stabilized, conduct instrumentation data scans, convert to engineering units, and record data.
- g. Hold tunnel conditions constant and adjust bleed air temperature or mass flow rate to next test point and again stabilize and record data.
- h. When all test conditions at a given tunnel airspeed or temperature are complete, adjust to next test point and repeat procedure above.

Following completion of dry runs for a particular test model configuration the procedure is repeated for wet runs, except that the tunnel water/air spray system is used to simulate icing cloud conditions. Dry air test procedures are repeated through item (g) with the following additional steps used during icing test runs:

- h. When all conditions are stabilized, including pre-adjustment of spray system water and air pressure, switch spray system on, adjust water flow rate rotameters for uniform spray across tunnel cross section, record data after a predetermined interval, and at completion of spray time switch spray system and hot air bleed flow off.
- As soon as spray system and bleed air are off, conduct a rapid shut-down of the tunnel fan motor. This procedure freezes the "iced" condition of the model because tunnel temperature has a tendancy to cool-down further by 10-15°F and to hold this condition due to the cold-soaked state of the all metal tunnel.
- j. Conduct an inspection of the ice formation on the model, take measurements and samples if desired, and remove ice from the model using a steam hose.
- k. Following the above, subsequent runs are conducted repeating the procedure outlined.

Spray duration during a test run was selected corresponding to the approximate time it would take to fly through the cloud size being simulated at the tunnel airspeed. During simulation of maximum continuous cloud characteristics, corresponding to low levels of LWC, tunnel airspeed was run at 225 KIAS (approximately 230-235 KTAS, depending on tunnel temperature).

For intermittent maximum cloud simulation conditions, however, airspeed was limited to either 200 KIAS (approximately 196 KTAS) or 150 KIAS (approximately 142 KTAS) because the tunnel spray system is limited in maximum water flow rate. Run time based on the time of transit through intermittent cloud size at these speeds, however, is insufficient to allow data acquisition so run time was increased to two (2) minutes as was seen in Table 3-1.

Although time in a cloud may have no significance in developing an analytical method there is other rationale for limiting the exposure time. For the nacelle and anti-icing system employed there are design limits to which icing can be prevented at any bleed air temperature and/or mass flow rate when testing in conditions of either maximum continuous or maximum intermittent icing. It was to avoid exceeding these limits that the approach was taken to use FAA defined cloud sizes and tunnel velocity to determine exposure time. In addition, longer exposure time to the icing cloud results in an undesirable amount of ice forming on the unheated nacelle support structure, especially under glaze icing conditions.

4.0 CORRELATION OF RESULTS

Dry air wind tunnel test data were used with the computer program CHANEFF to determine effective channel efficiencies for each set of data corresponding to a different nacelle lip pressure coefficient distribution and internal heat distribution system. These are related to changes in nacelle angle of attack, nacelle air flow, circumferential position around the lip and double versus single skin internal distribution systems. Although it would appear that a change of internal bleed air flow or bleed air temperature would result in different channel efficiencies, this is not the case. For a given type of internal distribution system, the surface temperature, which is used in determining the channel efficiency, is directly related to the quantity of heat provided whether by virtue of higher bleed mass flow or bleed air temperature. Thus the calculated efficiency, for the range of bleed flows and temperatures tested, is independent of these two parameters. Hence in order to use a larger data base for improved accuracy of the channel efficiency, the individual test efficiencies for a given physical arrangement are averaged. There will be efficiencies related to the 6. 9 and 12 o'clock measurement positions for each variation in nacelle angle of attack, mass flow and internal distribution system. In total 18 different efficiency distributions were computed, corresponding to three angles of attack, two mass flows and two distribution systems for each of three clockwise measuring stations. Table 4-1 presents a matrix of which dry test runs were used to calculate the efficiency and to which wet test runs they apply.

Table 4-1 Effi Runs used	ciency - Run matrix	a T. Calculations
,	Runs EFF applies for	3
for EFF	Dry	Wet
10A-24A	1A-24A	60A-83A
29A	29A	95A
30Â	30A	96A
31A	31Λ	· •
32A	32A	•
35 B-45B 53B-58B	358-46B 538-58B	1008-117
•	A.1	

A typical averaged surface pressure coefficient is presented in Figure 4-1. It is noted that the peak pressure coefficient from this test data is greater than 1.0. Since this is physically impossible the Pc curve was faired to 1.0 at the stagnation point as shown. This appeared to be a common occurance with the measured pressure data. This first came to attention during the running of the test and an effort was made to determine the cause of it. No reason for its occurance would be determined. Corresponding measured surface temperature distributions are shown in Figure 4-2 and the resulting averaged channel efficiencies from program CHANEFF are presented in Figure 4-3. Utilizing the pressure data from Figure 4-1 and efficiencies from Figure 4-3 surface temperatures were computed with program ICEOFF. A comparison of calculated and measured surface temperature for these dry air conditions is presented in Figure 4-4. It is seen that the agreement is excellant.

A comparison of surface pressure coefficient at the three nacelle inlet lip measuring stations is shown in Figure 4-5 for both wet and dry air. As would be expected the presence of water has little if any effect on the pressure coefficient. The corresponding channel efficiencies for dry air for the three inlet lip measuring stations is given in Figure 4-6 and the comparison of calculated and measured surface temperature for the three inlet lip measuring stations for both single and double skin bleed air distribution systems is presented in Figure 4-7. It is noted in Figure 8-6 that at the 6 o'clock position, the calculated channel efficiency exceeds 1.0. Although it is physically impossible to exceed 190% efficiency, the mechanics of the calculation process allow this to happen on rare occasions. Detailed checks revealed no mathematical or computational error and the use of this efficiency in program ICEOFF gave an exact reproduction of the measured surface temperature. It is concluded that there must be some of the basic assumptions underlying the method of channel efficiency that allows this to happen. Examination of the equation used to compute EFF reveals how this can occur. From equation (2-48), (2-57), (2-58) and (2-60):

$$EFF = \frac{HS_{H} (T_{S} - T_{A} - T_{2} + T_{5})}{C_{P_{B}} W_{B} (T_{B} - T_{5})}$$

It can be shown that, compared to T_{S} and T_{A} , T_{2} and T_{5} are relatively unimportant for the test conditions of this report. Hence it is easily seen that for conditions such that T_R and T_S are quite close in magnitude and T_{S} and T_{A} are quite different in magnitude, the result for EFF could exceed 1.0. This is undoubtedly due to some of the simplifications that resulted from early assumptions concerning the flow and heat transfer characteristics. Understanding how it can occur makes it no more desirable but in the final analysis it will reproduce accurate surface temperatures and thus will be tolerated. Examination of Figures 4-4 and 4-7 reveals that the agreement for dry air is excellent but for wet air it is less good. It appears that the method tends to over predict the temperature near the stagnation point and to under predict it near the aft limit of the heated area. Although the amount of difference between calculated and measured T_c varies with various conditions the trend noted above is fairly consistant. This could be caused by a somewhat inaccurate modeling of either the evaporation process or the heat transfer process that resulted from simplifying assumptions.

The balance of the figures in this section present the effects of independent parameters on the pressure coefficient, the resulting efficiency and a comparison of calculated and measured surface temperature. Figures 4-8, 4-9 and 4-10 present this information as influenced by nacelle angle of attack. Only dry air temperatures are presented because time did not allow the testing of the wet air counterparts.

Figures 4-11, 4-12 and 4-13 present pressure coefficient, efficiency and temperature comparison for changes in inlet mass flow. Here again one of the efficiency curves (Run 29A) exhibits a value greater than 1.0. In this case 2.44. Although appearing to be unreasonable at first, the same arguments as set forth before apply and again the calculated dry air surface temperature agrees well with measured values.

(4-1)

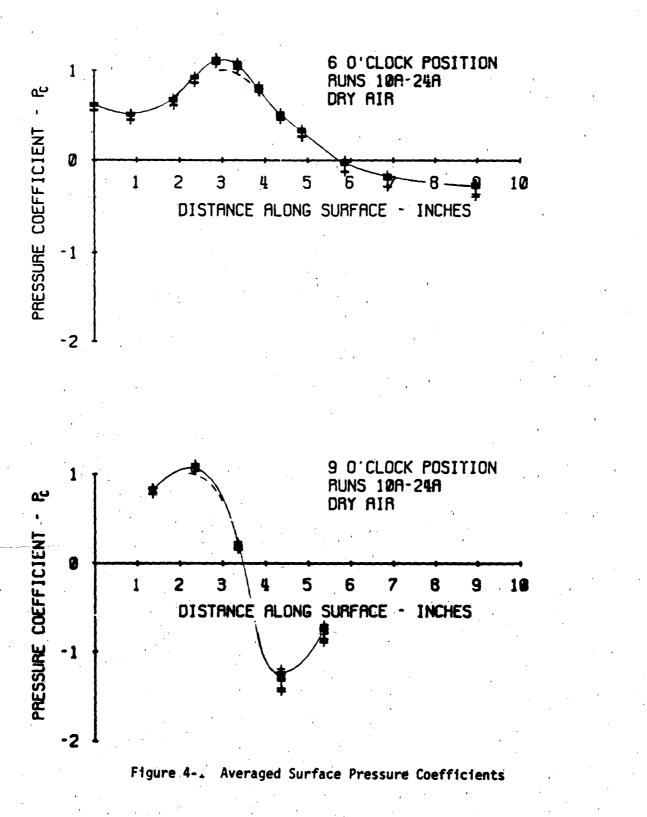
Figures 4-14 and 4-15 present channel efficiency and comparison of temperatures for single and double skin anti-icing systems.

The last four figures (4-16, 4-17, 4-18 and 4-19) show only comparative temperatures because they were aerodynamically and geometrically similar to other configurations and used pressure coefficients and efficiencies defined for them. These similarities are distinguished in Table 4-1.

The effects of bleed air temperature are illustrated in Figure 4-16. Here the comparison include: wet and dry air as well as single and double skin systems.

Temperature comparison for changes in bleed air mass flow are shown in Figure 4-17. Included are data for wet and dry air as well as single and double skin systems.

Figure 4-18 gives comparative temperature for a variety of liquid water contents. It should be noted here that it was not possible to hold all other test parameters constant during the test while varying liquid water content alone. Hence a direct comparison for the effects of liquid water content alone cannot be made. Again both single and double skin systems are shown.


The comparison of temperature while changing water droplet diameter is given in Figure 4-19 for both single and double skin systems. As for liquid water content, it was not possible to change droplet diameter alone while holding all other test parameters constant. Thus a direct comparison to determine effects of droplet diameter alone is not possible.

For all of these comparisons, the results are nearly the same: very good agreement for dry air and moderately good agreement for wet air. It is noted that even minute as well as large fluctuations in surface temperature are reproduced for dry air calculations. Although not as accurate as for dry air, the wet air temperature distributions generally give the correct

trend and do display the gross variations that exist in the measured data. This leads to the belief that the method is very useful and needs only some refinements as applied to wet air calculations.

A correlation of all calculated and measured data was performed. For the 966 calculated dry air temperatures the mean deviation from measured temperature is $6^{\circ}F$ and for the 924 wet air temperatures the mean deviation is $19^{\circ}F$.

During the data analysis, it was noted that the calculated surface temperatures for wet air consistantly gave better correlation with the measured results for the double skin system than for the single skin system. There are at least two reasons why this is so. First the double skin will give a more uniform temperature distribution (i.e. nearly constant) and second, the deviations from this nearly constant value will be smaller. Both of these will work in favor of better accuracy from the calculation method. These are well illustrated by the tabulated data, (Tables C-4, C-5 and C-6) and Figures 4-17 and 4-18.

טי

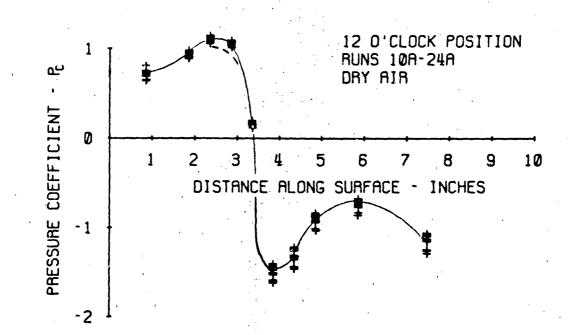
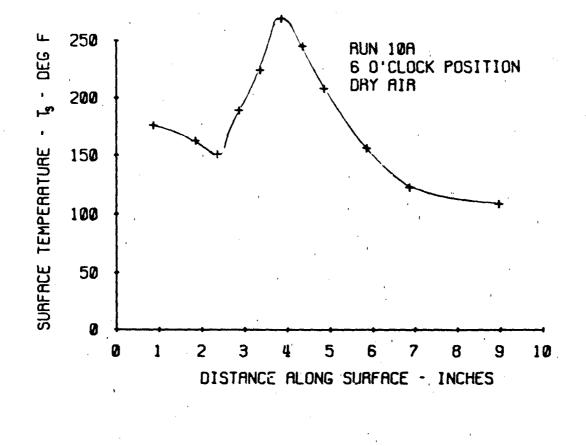
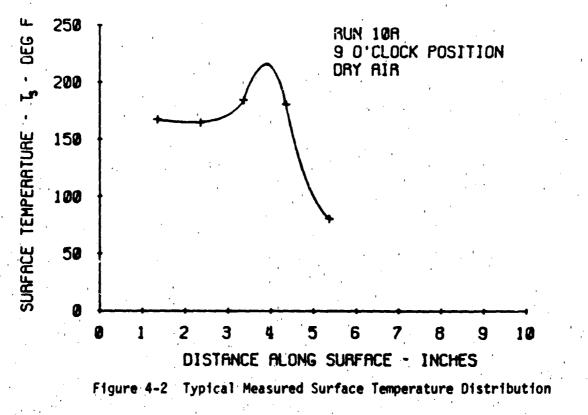
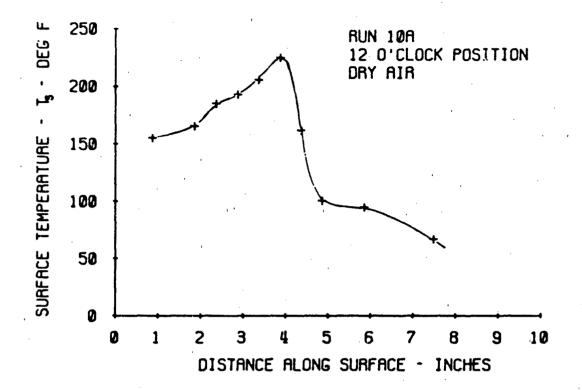
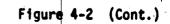
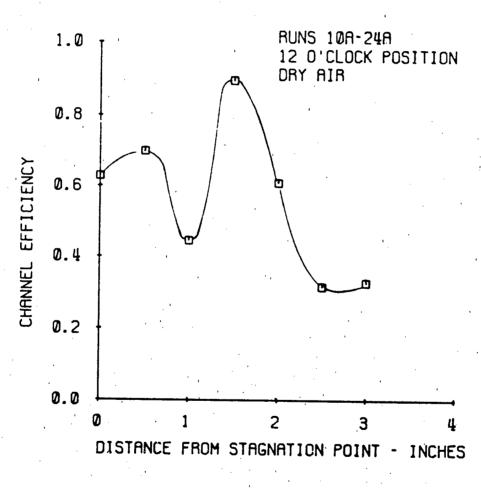
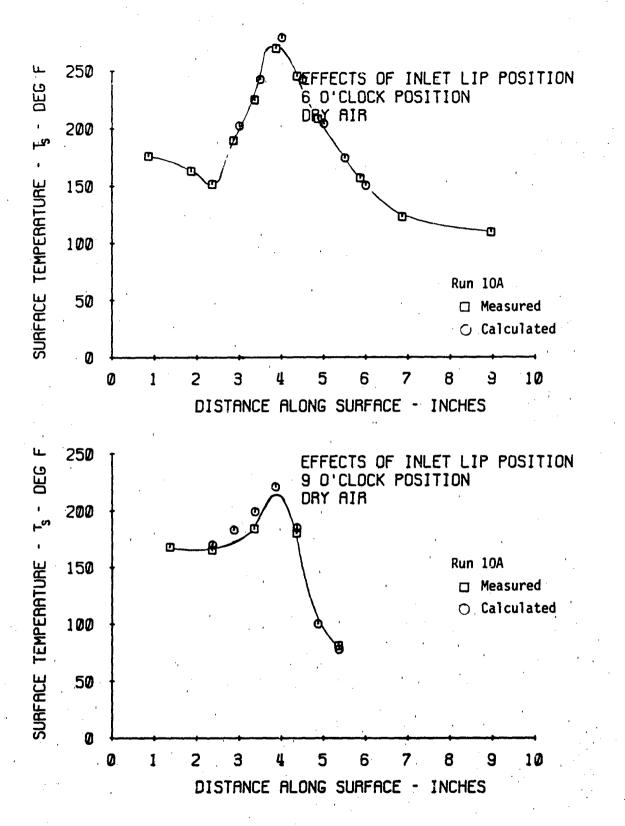
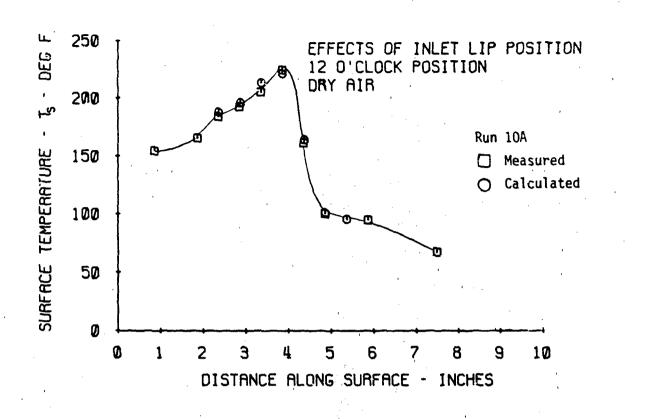
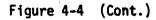
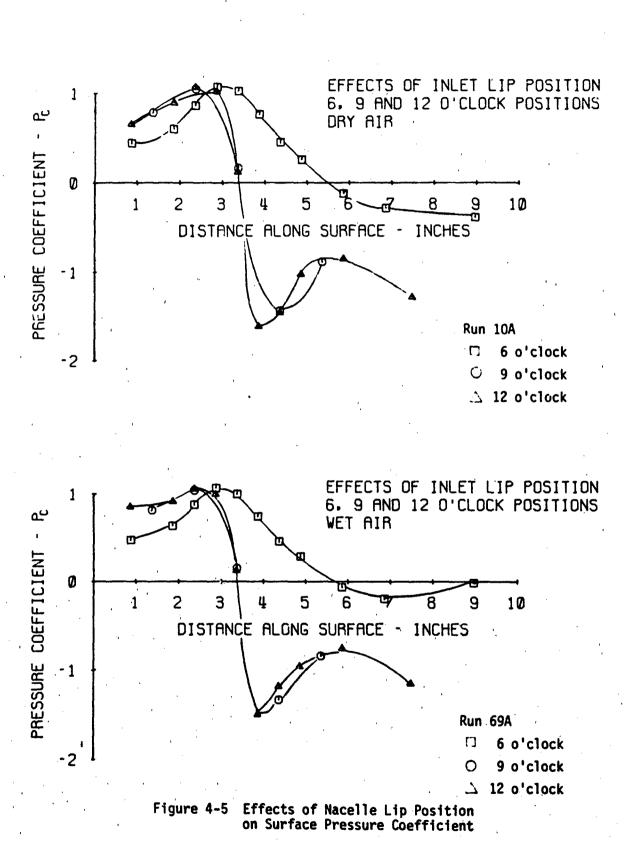
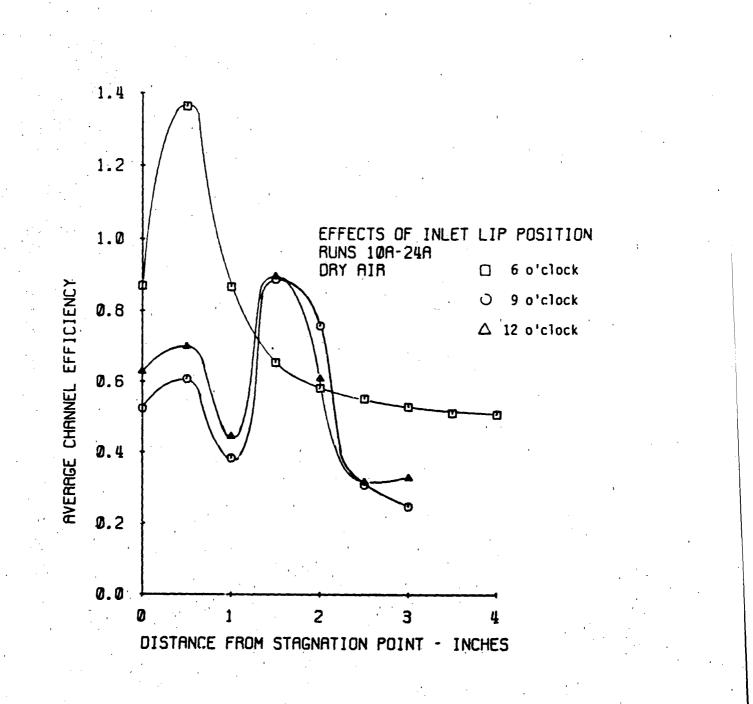






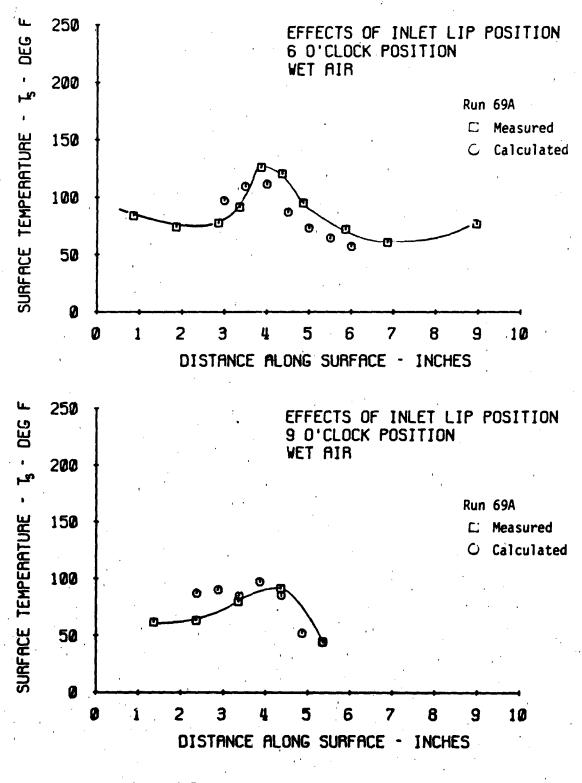
Figure 4-1 (Cont.)

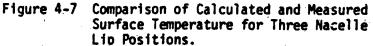
4.

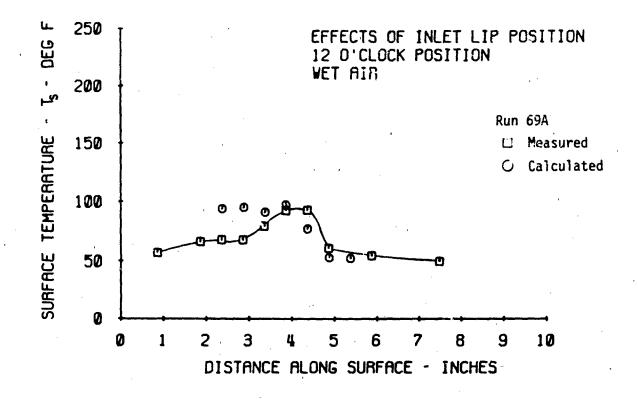





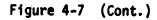

Figure 4-3 Average Channel Efficiency











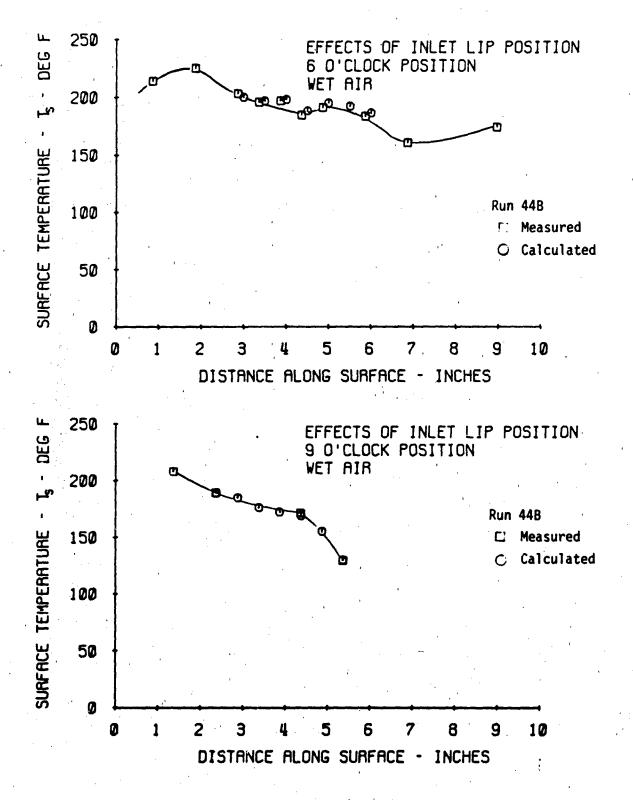


Figure 4-7 (Cont.)

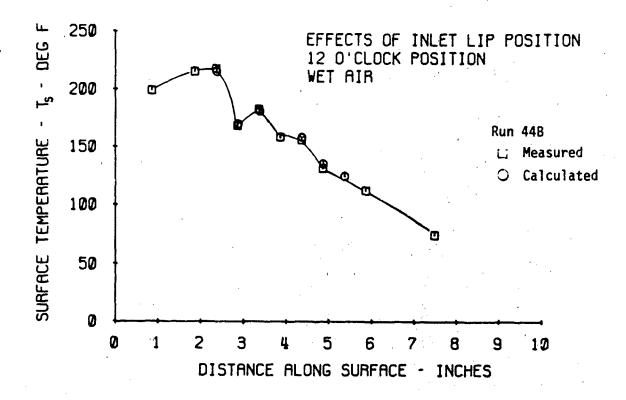
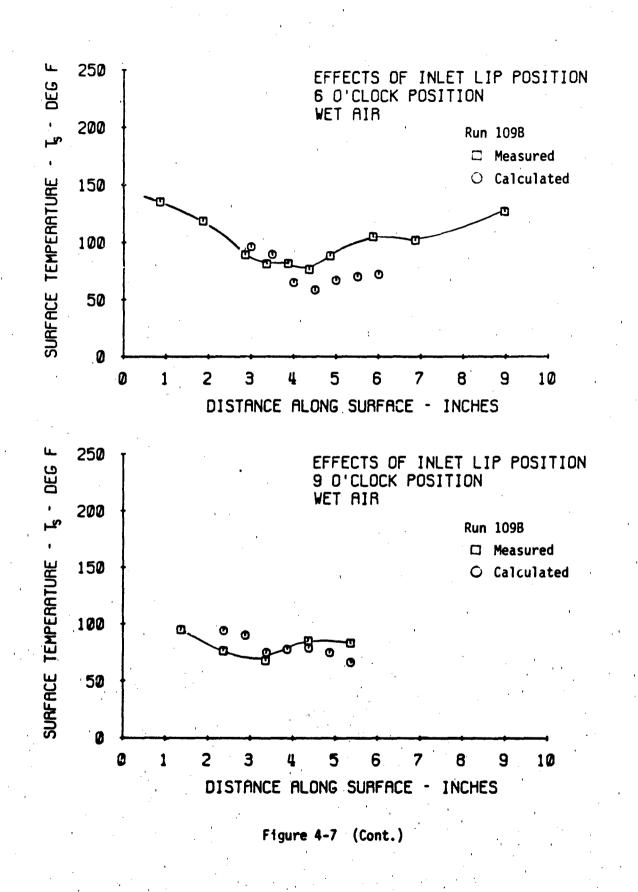
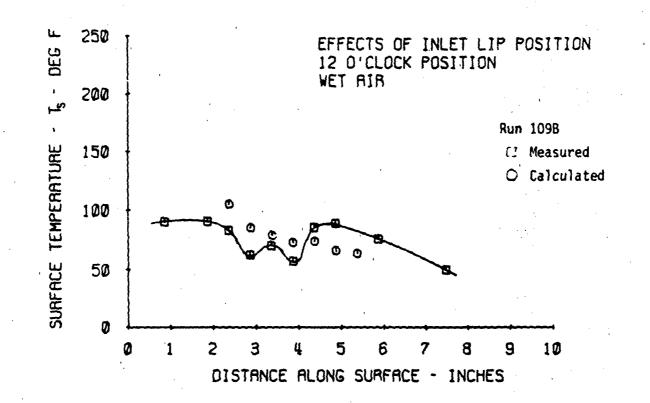
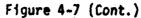
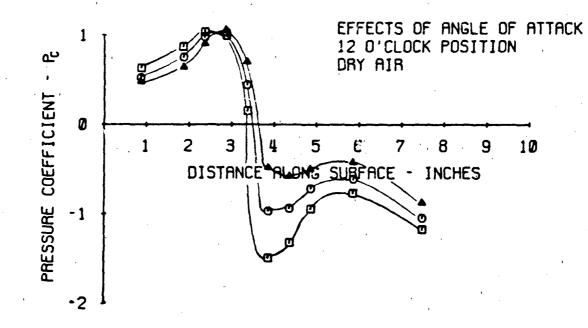
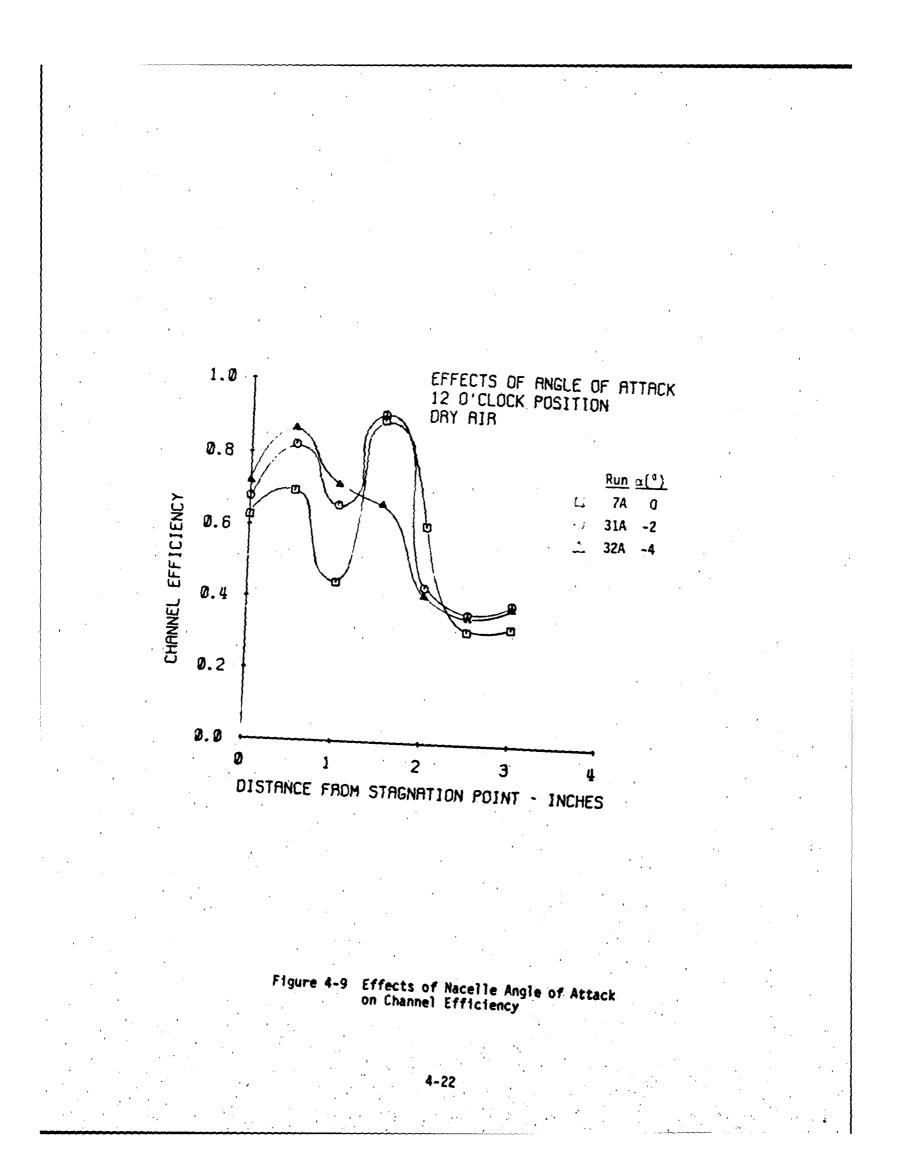






Figure 4-7 (Cont.)



 $\begin{array}{cccc}
Run & \alpha(^{\circ}) \\
\hline
1. & 7A & 0 \\
\hline
. & 31A & -2 \\
\hline
. & 32A & -4
\end{array}$

Figure 4-8 Effects of Nacelle Angle of Attack on Surface Pressure Coefficient

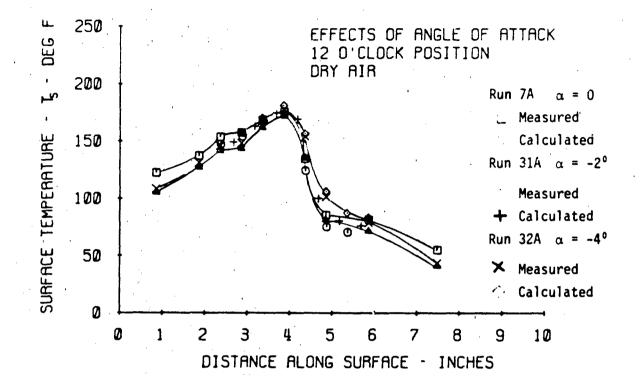
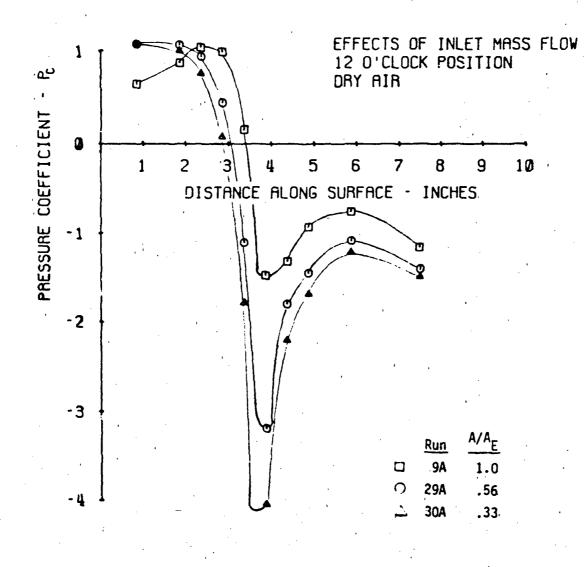
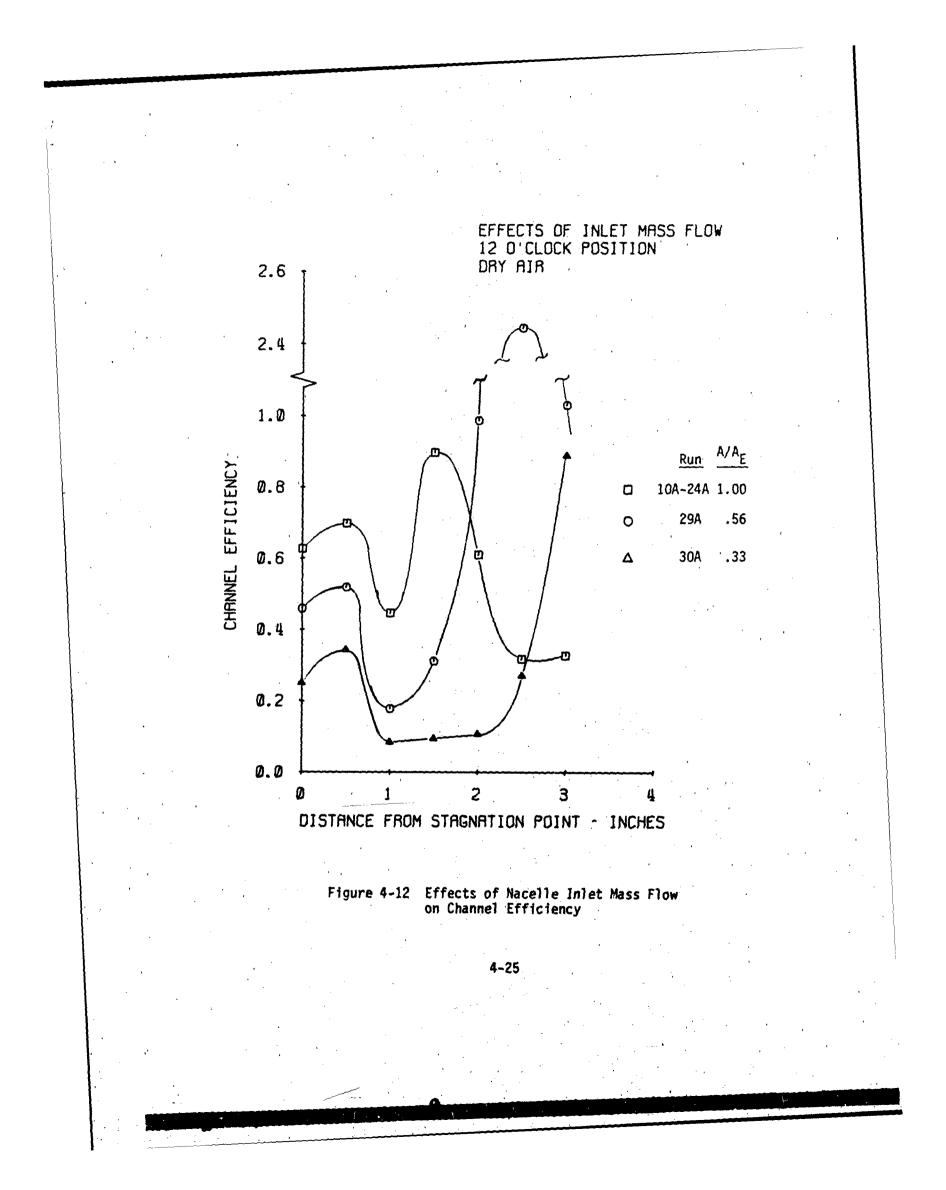




Figure 4-10 Comparison of Calculated and Measured Surface Temperature for 3 Nacelle Angles of attack

Figure 4-11 Effects of Nacelle Inlet Mass Flow on Surface Pressure Coefficient

4_24

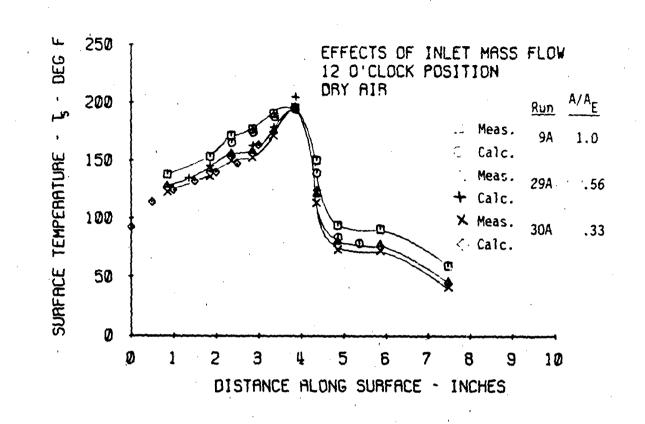


Figure 4-13 Comparison of Calculated and Measured Surface Temperature for three Nacelle Inlet Mass Flows.

4-26

Т. Ц

, N ^т.

.

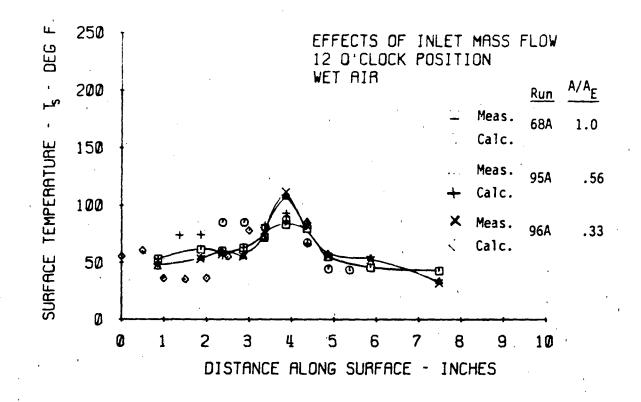
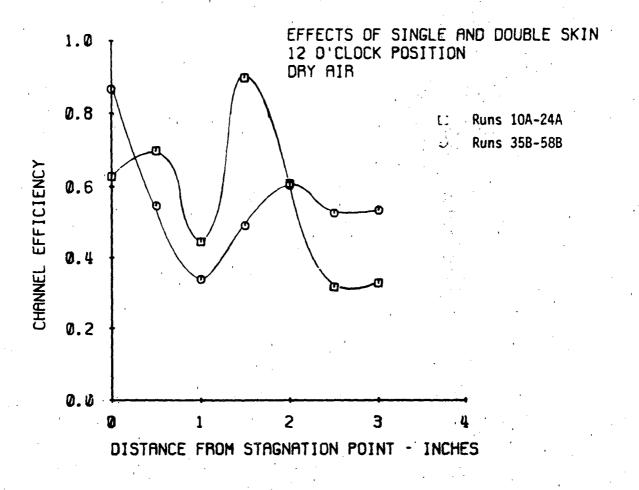
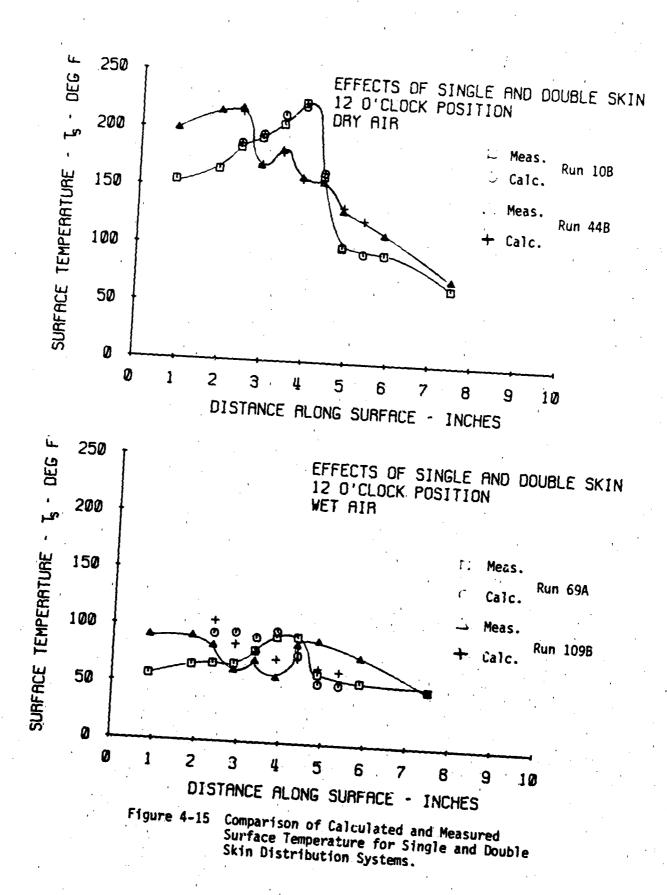
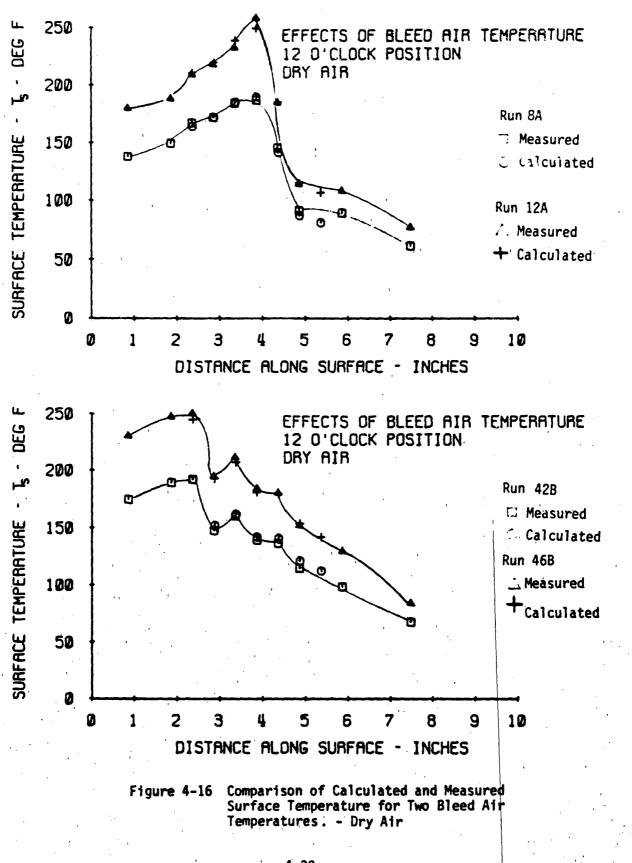
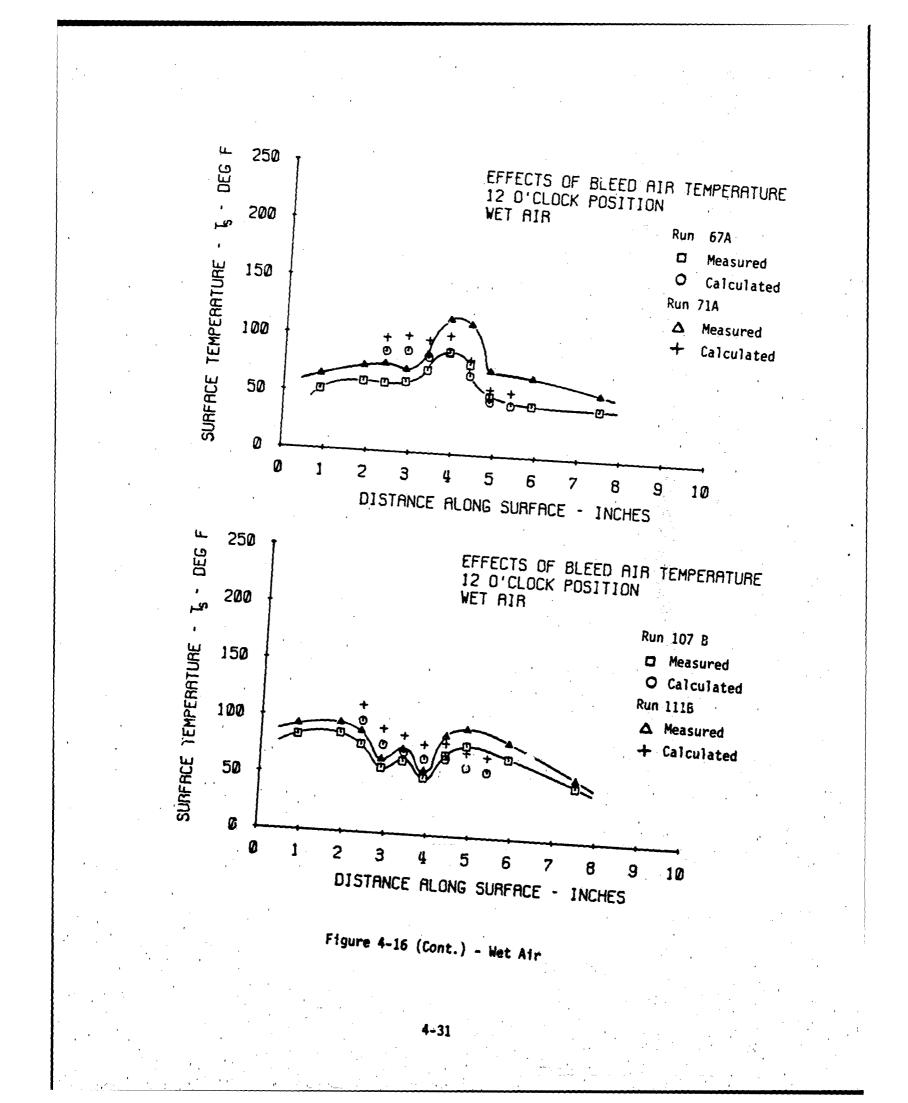
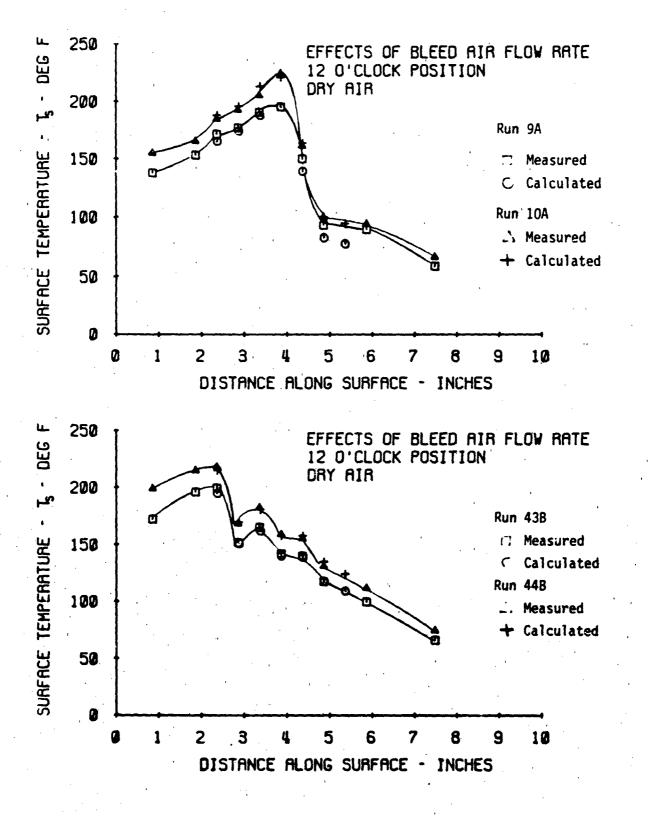
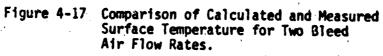


Figure 4-13 (Cont.)

- 4-27


Figure 4-14 Effects of Internal Flow Distribution on Channel Efficiency.

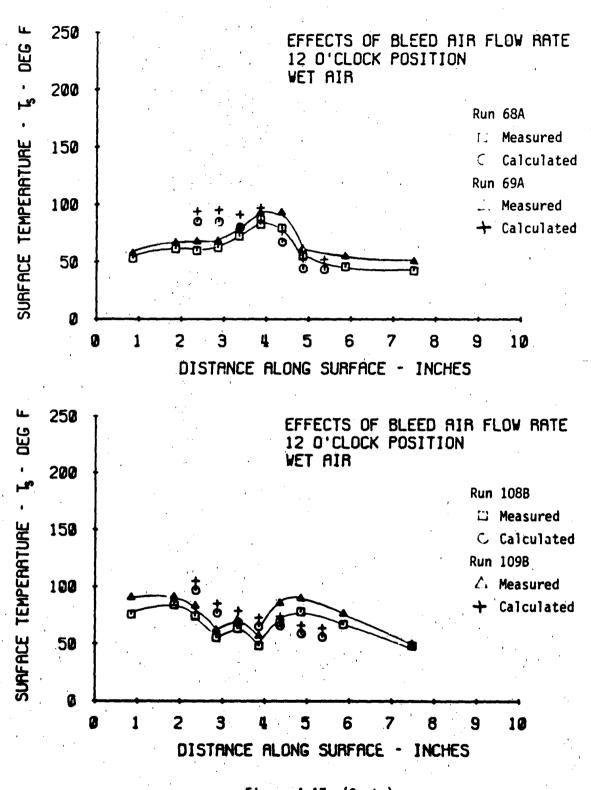
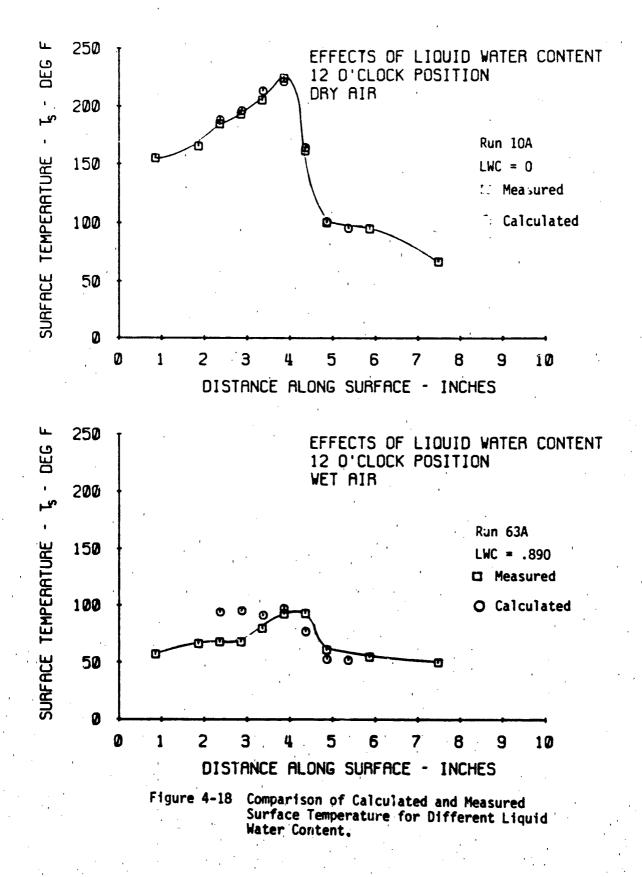
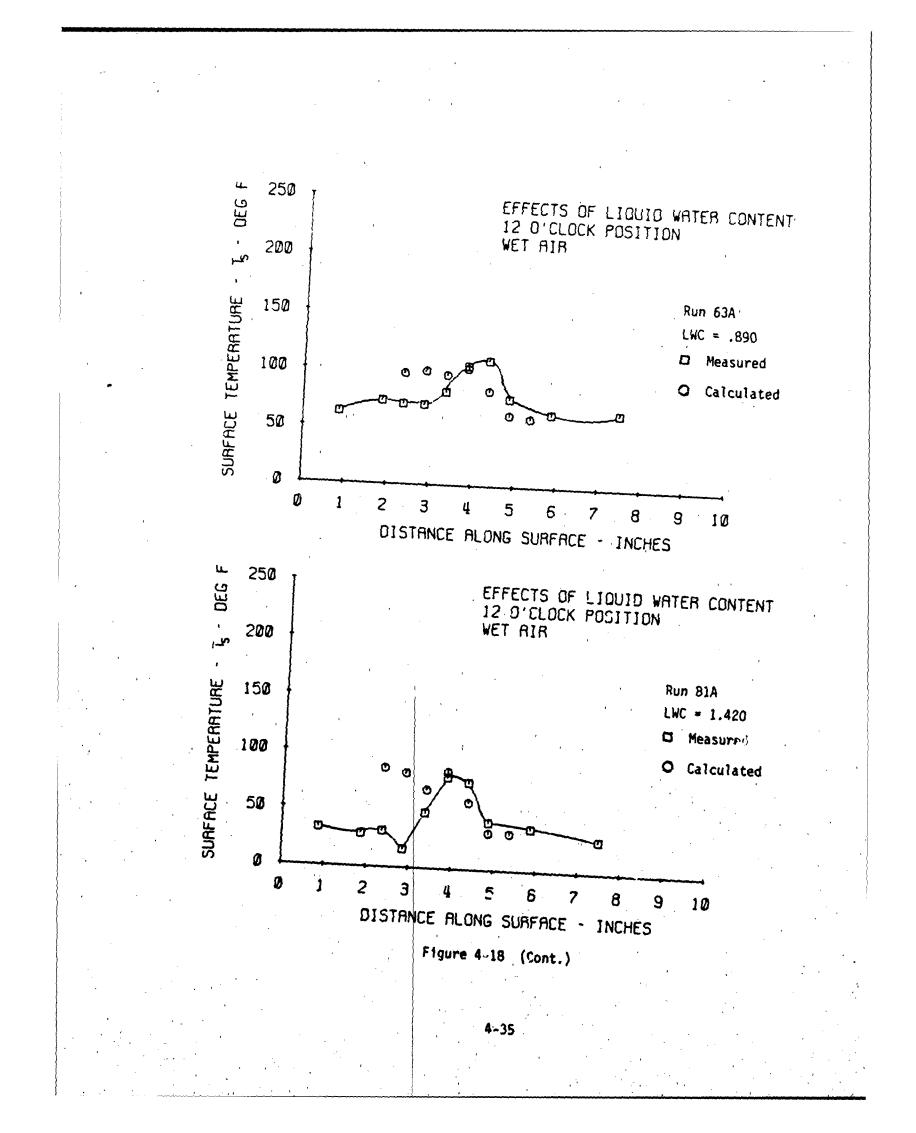
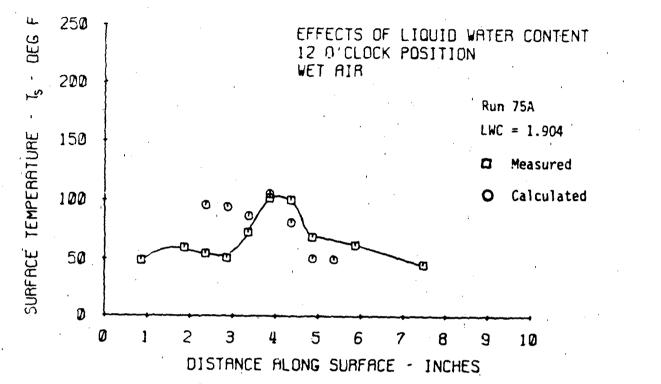





Figure 4-17 (Cont.)

Figure 4-18 (Cont.)

4~36

a s s F

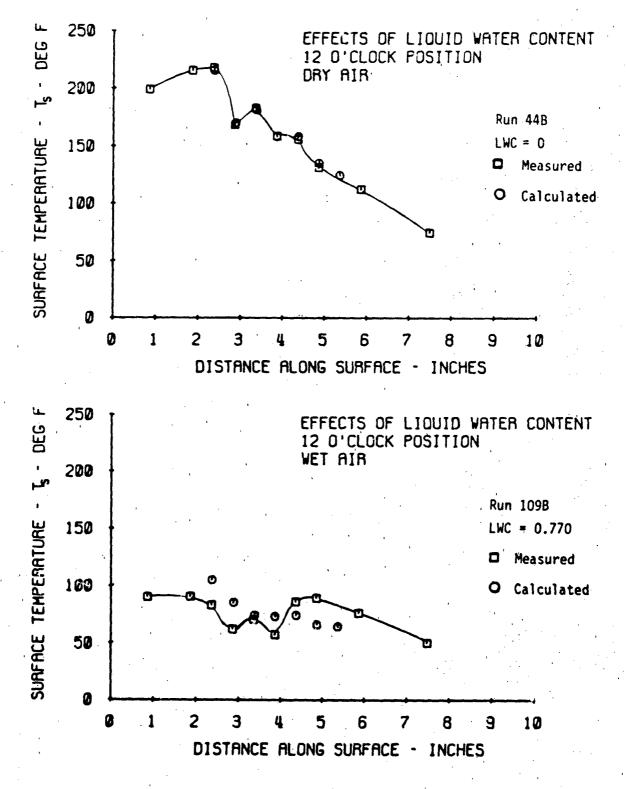
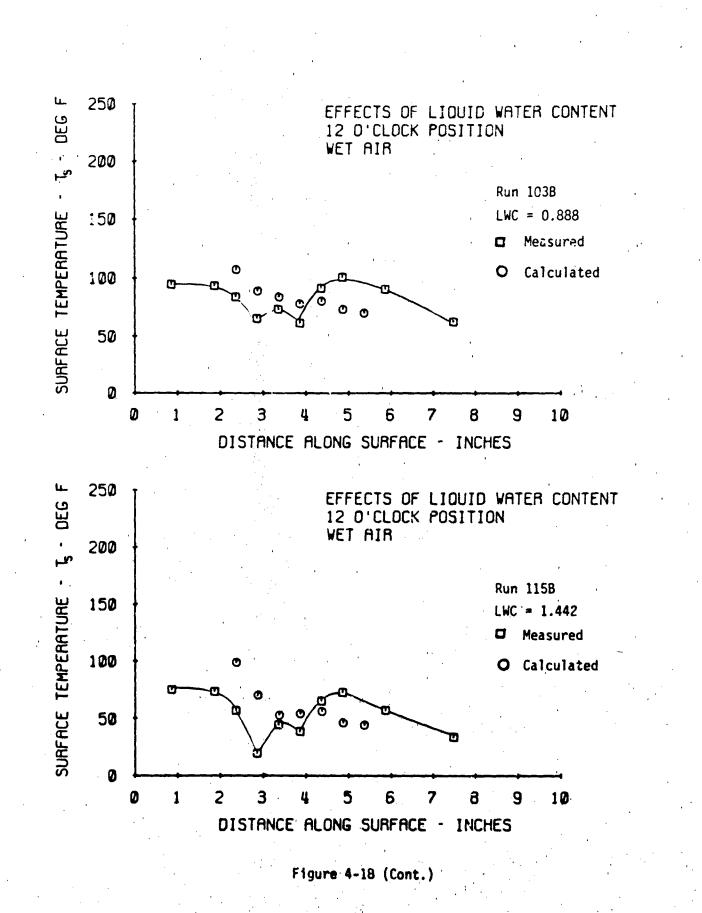
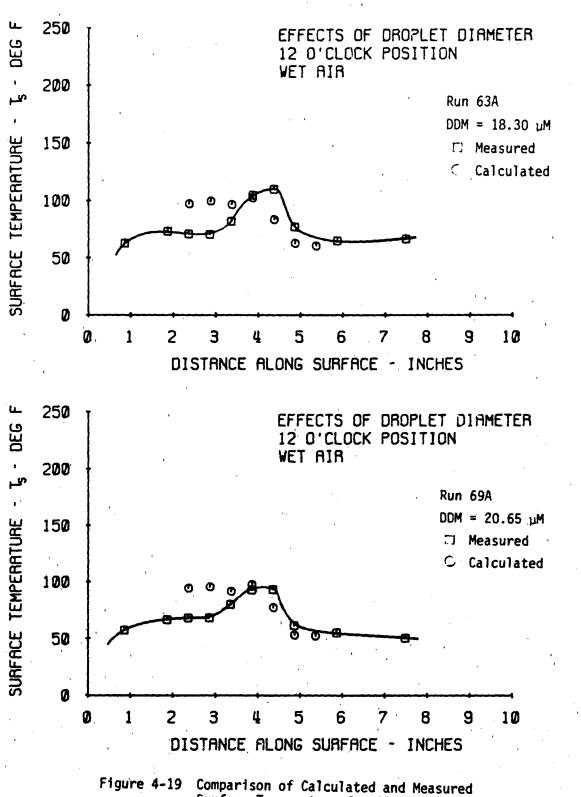
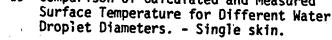





Figure 4-18 (Cont.)

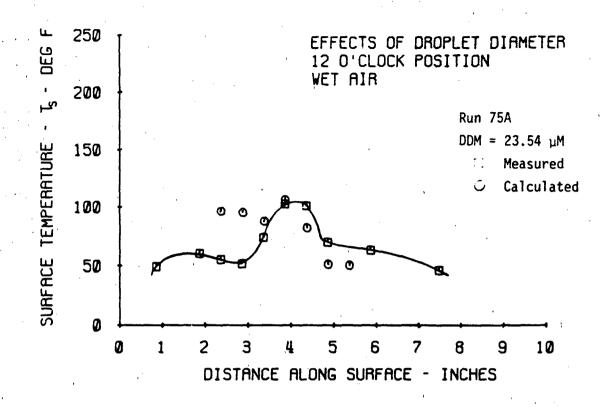
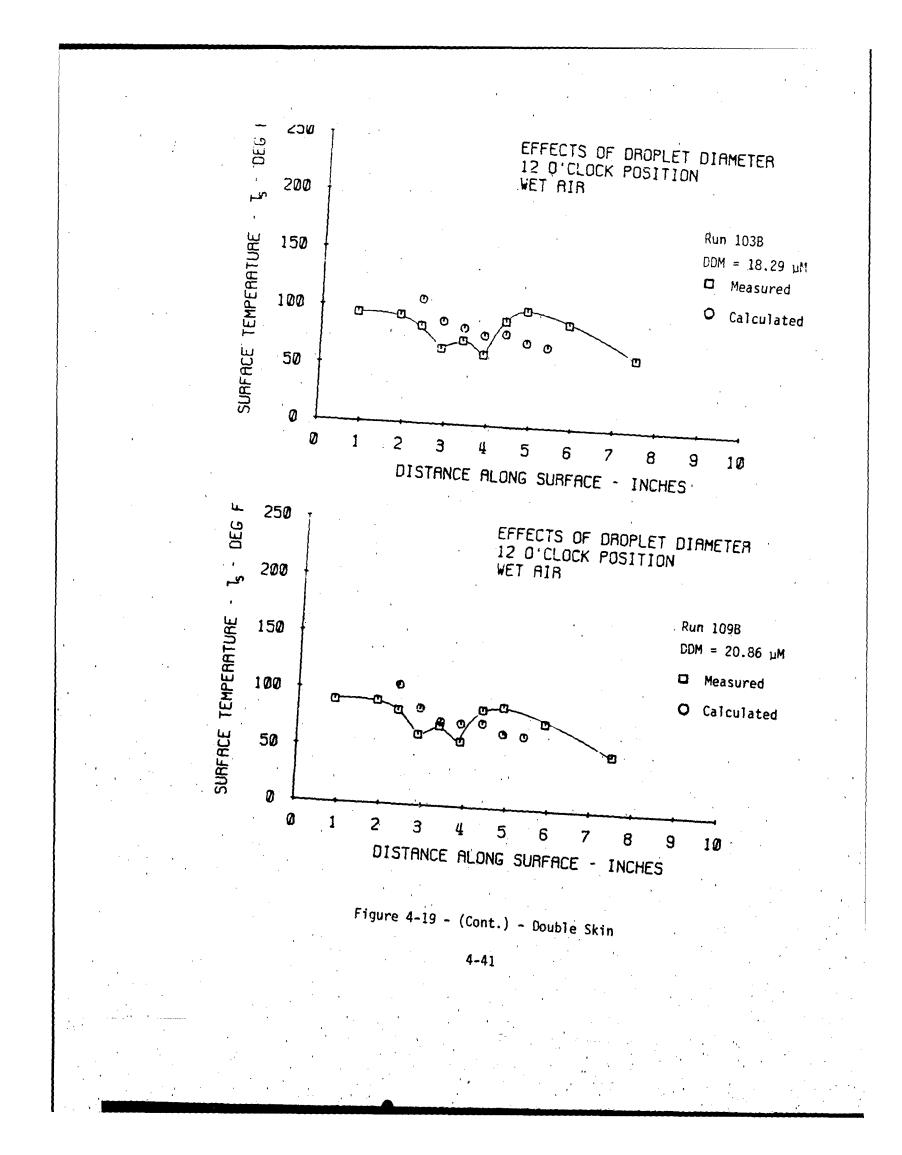
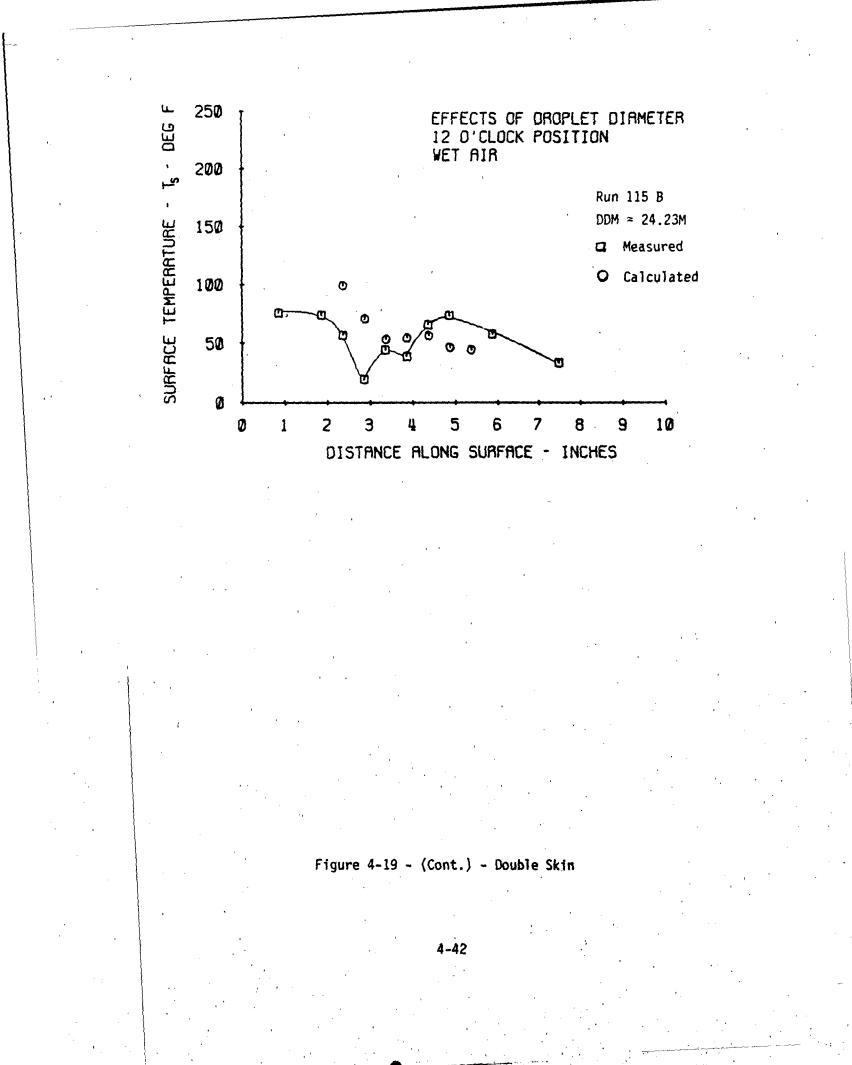




Figure 4-19 (Cont.)

5.0 APPLICATION OF THE PROCEDURES

The analysis method consists of two separate programs written in Fortran IV. As presently programmed, these can be run on PDP 11/70, IBM 370 or other compatible equipment.

The first program, CHANEFF, is used to determine the heat transfer efficiency of the inlet lip hot air distribution system. The intent is to determine the efficiency for the particular configuration to be employed in the nacelle design by running dry air tests in a wind tunnel. The test model can be two-dimensional with a configuration representing a partial section of the nacelle inlet design. Data to be collected during dry air tests and geometrical information that is required for running program Ch. _FF are:

Nacelle Geometry

Leadin edge radius

Streamwise surface length of the heated surface

High-light diameter

Flight Condition Data

Flight/tunnel pressure altitude

Ambient temperature

Flight velocity/airspeed

Bleed air mass flow rate

Bleed air temperature

Inlet Lip Data

Surface skin temperature profile streamwise around inlet lip Surface static pressure profile streamwise around inlet lip

Surface static pressures will be used to calculate the pressure coefficient characteristics of the inlet lip. With the above listed data the channel efficiency can be calculated for incremental intervals streamwise around the inlet lip. For the same nacelle geometry and engine flow characteristics, the pressure-coefficient profile will remain the same so long as the nacelle angle-of-attack is held constant.

The second program, ICEOFF, can be employed to evaluate the anti-icing performance of the nacelle inlet. This program can be used in any one or all of the following ways:

- a. As a tool during the design phase to determine the bleed air requirements for anti-icing.
- b. With incorporation of an engine performance routine into the present program this can be used to size the heating system.
- c. As a means to demonstrate engine/nacelle anti-icing capability as part of the FAR anti-icing performance.

The data required for running program ICEOFF are:

Nacelle and Aircraft Geometry

Nacelle chord length Nacelle thickness-to-chord ratio Nacelle inlet leading edge radius Nacelle inlet high-light diameter Extent of inlet lip heated surface Wing area.

Flight Conditions

Flight/tunnel pressure altitude

Aircraft gross weight

Flight velocity

Constants of the airplane drag polar

Inlet Lip Data

Surface pressure coefficient profile streamwise around the inlet lip Channel efficiency profile streamwise around the inlet lip (From Program CHANEFF)

Icing Conditions

Ambient temperature

Droplet median diameter

Liquid water content

Cloud horizontal extent

Program ICEOFF is written to operate in two different modes as follows:

Mode I - This mode uses icing tunnel data and predicts evaporation and runback. In order to check run-data as it proceeds, this mode of operation prints out intermediate calculation of the point-bypoint analysis.

Mode II - This mode is used for icing prediction under given flight and icing conditions.

Detailed instructions for use of these programs along with sample inputs and outputs are provided in Appendices A and B.

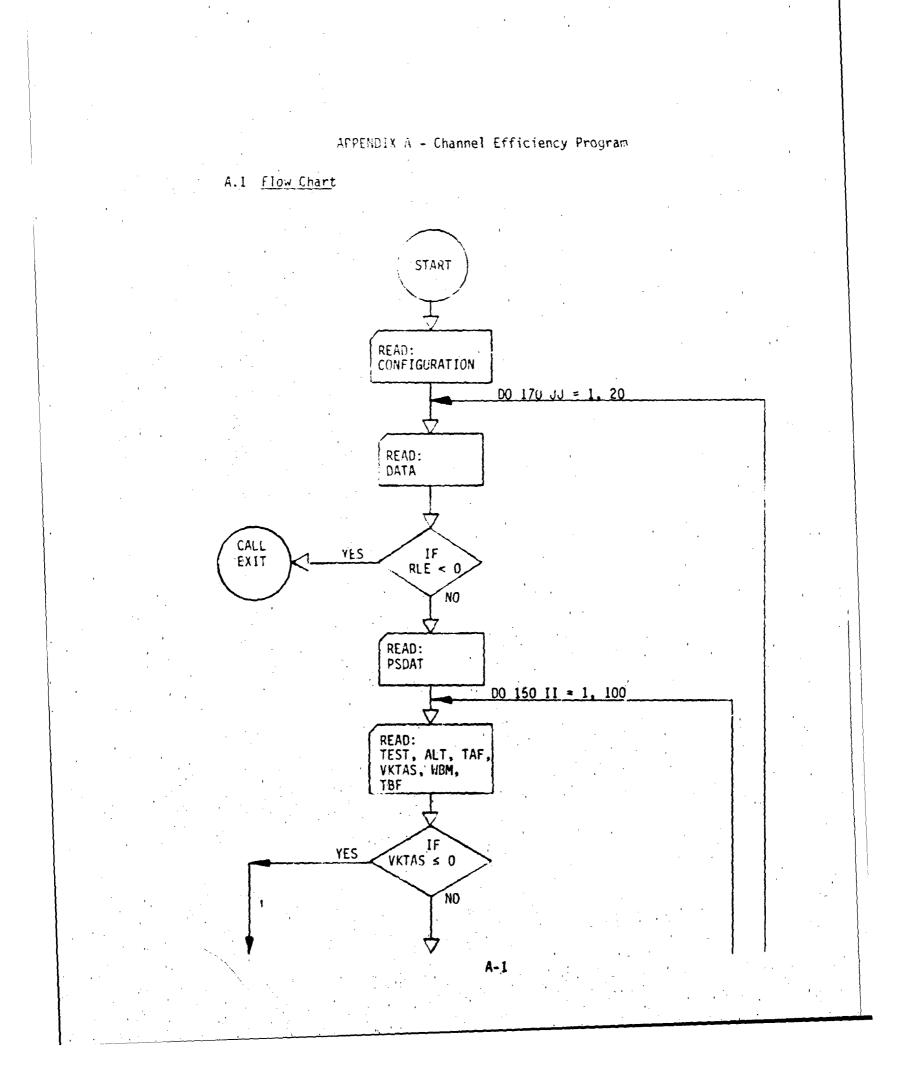
6.0 CONCLUSIONS

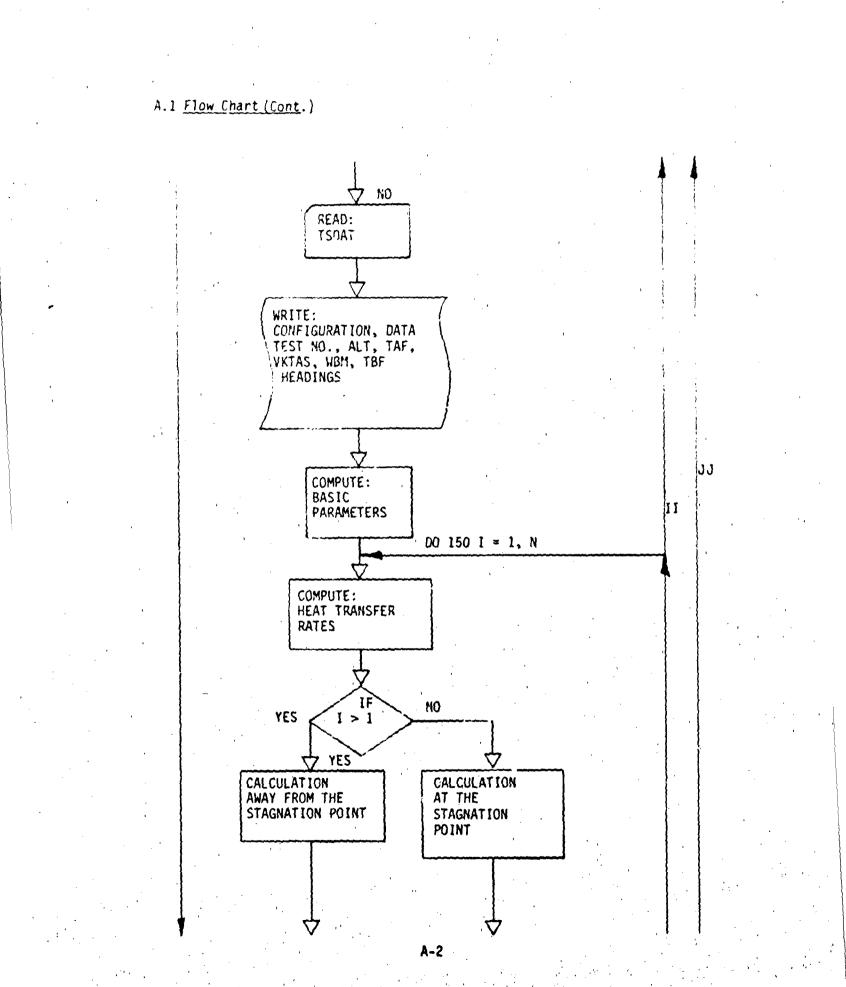
Two computer programs, based on a simplified heat transfer theory, have been developed. The channel efficiency program, CHANEFF, provides a means for evaluating the external and internal heat transfer characteristics of an engine inlet anti-icing system. The anti-icing program, ICEOFF, provides a means of evaluating the icing performance characteristics of an engine inlet anti-icing system. Both programs are developed for a continuous flow hot gas anti-icing system.

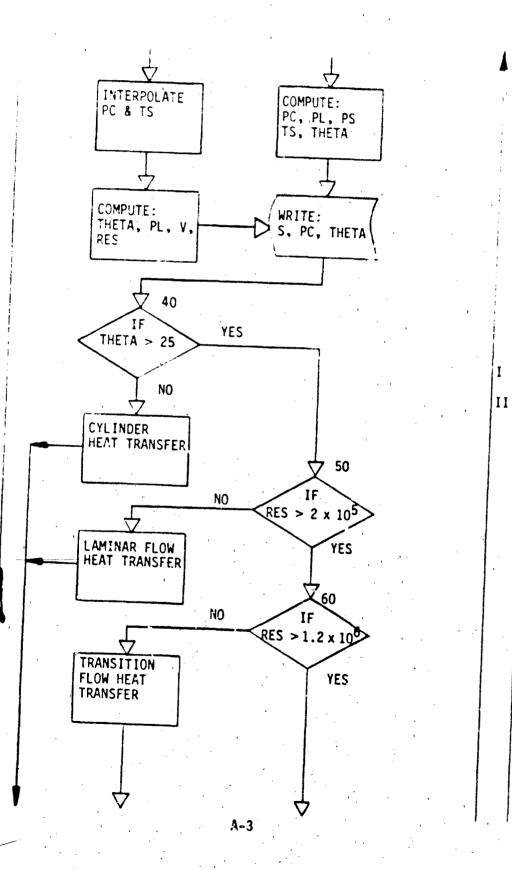
The program ICEOFF calculates the inlet lip skin temperature profile for dry air with very good agreement. The calculations for icing conditions, though useful, are not so good. The mean deviation of the calculated temperature is $6^{\circ}F$ for dry air and $19^{\circ}F$ for wet.

It is concluded that, although better accuracy could be desirable for wet air calculations, the method is simple to use and gives rapid and useable predictions for the surface temperature distribution on an engine nacelle inlet lip that is anti-iced with hot bleed air flow. The method is applicable to a wide range of independent variables in the problem and treats double skin distribution systems equally as well as single skin piccolc tube systems.

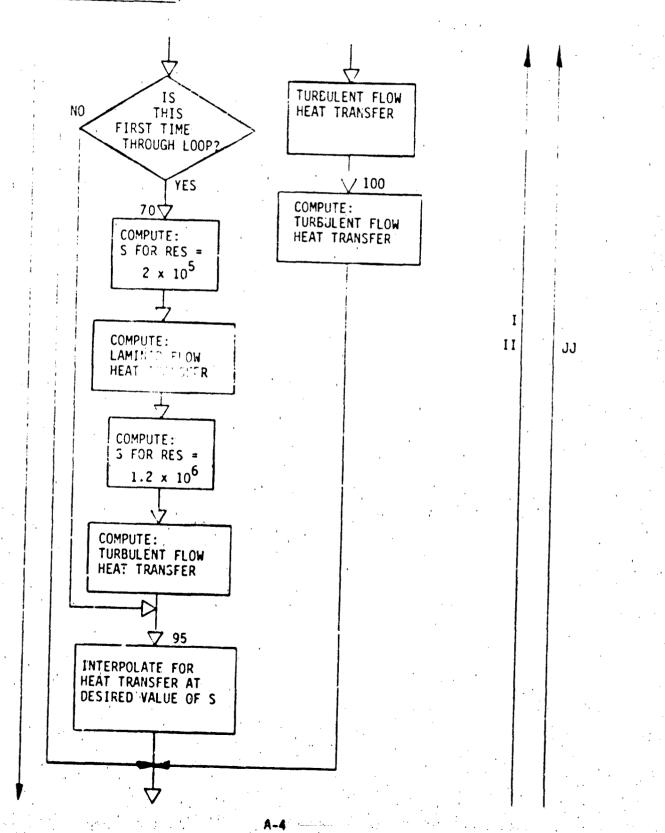
7.0 RECOMMENDATIONS

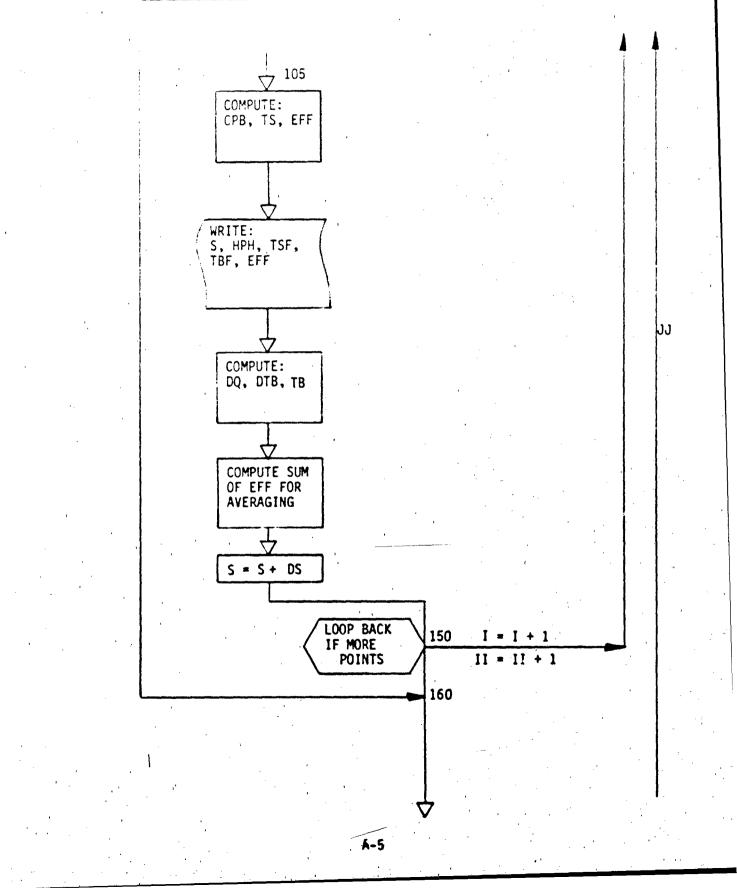

The underlying basis of the present approach is the characterization of the internal heat transfer that is used in the analysis published by the Federal Aviation Administration¹, by a single parameter, referred to as Channel Efficiency. This parameter is used in lieu of a more definite determination of an internal convective heat transfer coefficient. Channel Efficiency equates to the ratio of external heat transfer divided by internal heat transfer. Any errors caused by improper determination of the internal or external heat transfer will then appear in the value of Channel Efficiency when using the program for evaluating experimental data.


Based on the analysis of dry air data using program ICEOFF, it is concluded that the assumptions made in formulating the internal and external flow and heat transfer model are very reasonable. This is supported by the $6^{\circ}F$ mean temperature deviation which is probably well within the data accuracy. This is considered excellant agreement and no change to this portion of the program is recommended.


The correlation accuracy for wet air $(19^{\circ}F$ mean deviation) is not as good as for dry air. It appears that there is possibility for improvement here. Brief analyses of the cause of major temperature differences between calculateu and measured near the stagnation point indicated that the rate of heat transfer in this region is consistantly over predicted resulting in higher than measured temperature. On the other hand, near the aft limit of the heated region, the calculated temperatures tend to be lower than measured. A more in-depth investigation of these two regions would probably result in improved calculation precedures and better accuracy on temperature correlation. Potential candidates for improvement would be the modeling for evaporation and heat transfer.

1. op. cit.


The method presented does give accurate trends for a variety of external ambient conditions (i.e. droplet diameter, liquid water content, etc.) and no further improvements are recommended in this area.



1 33

A

A-6

JJ = JJ + 1

WRITE: S, EFFAVG, NUMBER OF CASES AVERAGED

170

CALL EXIT

IJЗ

A.2 Input and Operation

This program uses experimental data for flight and bleed air conditions to compute a channel heat transfer efficiency on a point by point analysis.

INPUT PREPARATION

CARD 1 (40A2)

Title

This card can contain up to 80 columns of alphanumeric information. It will be used as the heading for the output data sheet.

CARD 2 (4F8)

This card has 4 fields of 8 columns each to contain the variables RLE. SH. DIA and DS

Nacelle Ceometry

(F8.2 format).

feet.

Column 1 RLE - Radius of curvature for the leading edge of the nacelle inlet lip in feet.

Column: 9 SH

Column 17 DIA - Nacelle inlet highlight diameter in feet.

Column 25 DS

CARD 3 (16F5)

Pressure Coefficient Table.

analysis in feet.

This card has 16 fields of 5 columns each to contain streamwise distance measurements, from the stagnation point to the point under analysis, in inches. The values should begin at zero (stagnation point) and increase at any desired interval until the aftmost heated region is reached (F5.2 format).

Streamwise length of the heated surface in

Length of increment used between points of

(Heated area per foot circumference).

A.2 Input and Operation (Cont.)

CARD 4 (16F5)

Pressure Coefficient Table.

This card has 16 fields of 5 columns each to contain pressure coefficient values for the corresponding points on Card 3 (F5.2 format).

CARD 5 (40A2)

Flight Title

Test or flight number and any pertinent information up to 80 columns (40A2 format).

CARD 6 (5F8)

Flight Parameters.

This card has 5 fields of 8 columns each to contain the variables ALT, TAF, VKTAS, WBM and TBF (F8.2 format).

Column	1	ALT	-	Altitude (MSL) of aircraft in feet.
Column	9	VKTAS	-	True airspeed of the aircraft in knots.
Column	17	TAF	-	Ambient temperature in ^o F.
Column	25	WBM	, #	Bleed air mass flow per engine in lb/min.
Column	33	TBF	•	Bleed air temperature in ^o F.

CARD 7 (16F5)

Surface Temperature Table

This card has 16 fields of 5 columns each to contain streamwise distance measurements, from the stagnation point to the point under analysis, in inches. The values should begin at zero (stagnation point) and increase at any desired interval until the aftmost heated region is reached (F5.2 format).

CARD 8 (16F5)

Surface Temperature Table.

This card has 16 fields of 5 columns each to contain surface temperature values corresponding to the points on Card 7 (F5.1 format).

Up to 100 cases of cards 5, 6, 7 and 8 can be handled at one submission. Card 8 followed by a blank card will cause the routine to calculate pointby-point average efficiencies and then loop back to read new nacelle geometry and pressure distribution data (cards 2, 3 and 4). As many as 20 such configurations can be handled at one submission. Card 8 followed by 2 blank cards will terminate the program.

(3 <u>Program Listing</u>	. ERUGHAM_CHANEFE				
•	REAL J,K1,MU DIMENSION TI DIMENSION PS DIMENSION TS DIMENSION FF FIMENSION SI	.ENGINE INLET DIP .DETERMINATION OF TLF(40),FLT(40) DAT(16,2) DAT(16,2) F1C(16) FCH(16)	ANII-ICE AMALY Rielp Air Chan	SIS. NEL ÉFÉICI	laci	• • • • • • • • •
	NPF@(UNIT=3; Tk≈2	NAME='CHANEEF.DAT' NAME='CHANEEF.DUT' CUNSTANIS	,1766='060') ,UISD='06101')		`	
-	T₩≈3 NPS=16 NTS=16 G=32.174 J=778. P[≈3.1416 F=53.35	n e e e e e e e e e e e e e e e e e e e			· · · ·	
	PEAD(JR,400) DU 170 JJ=1, XH=0.0 D() S L=1,7 FEF1C(L)=0.0	20				
	5 CONTINUE READ(IR,300) IF(RLE .LE. SL=SH/2. N=SU/0S+1 PEAD(IP,1400 DO 150 IT=1 PEAD(IR,400)) PELSH, DIA, DS 0.0) CALL EXIT)) PSDAT ,100 0 FL1				
·	READ(IR,300) TECNETAS LE	0 ALT, 1AF, VATAS, WBL - 0.0) GD TO 160 - 1.0) GD TO 20 0) TSDAT	(, TBF	· · · · ·	,	
•••	TSDAT(L,2)=1 25 CUNTINUE TA=TAF+459.(WB=TBF+459.(WB=WBM/(60.1 WRITE(IW,410 WRITE(IW,600 WRITE(IW,400	1SUA1(L,2)+454.600 696 *PI*DIA) 0) TITLE 0) RLE,SH,DIA	. .			· .
	WRITE(IW,70(WRITE(IW,80) A=SORT(1.4*(O) ALT,TAF,VYTAS,WI		RS		· · ·
	VKTAS=XV+A 30 V0=VK1AS=1.4 CP=.2365+7.4 MU=7.475=TA K1=(4.752+.4 PR=CP+MU/K1	6878			·	
· . -	RHO=PA/TA/R REFTO=RHO#V RELE#REFTU#	U/MU 2.*PLF	-10	· · ·		

A.3 Program Listing (Cont.) DP=kHu/2.*V0*VN/G T2=VN*VN*P8**.5/(2.*CP*G*J) PUINT-BY-DOINT ANALYSIS OF RELATIONSHIPS, STARTING AT HEAT TRANSFER RELATIONSHIPS, STARTING AT PUINT AND FNDING A AFTMOST STAGNATTUN PCINT OF HEATED REGION AT AFTMUST POINT OF PEATED REGION -INITIALISE CONDITIONS AND STAFT S=PSDAT(1,1)/17 NN=1 DO 150 I=1,4 IF (J .GT. 1) GO TO 35 C C C ---STAGNATION POINT CALCULATIONS PC=PSDAT([,2) TS=TSUAT(1,2) THFTA=S/PLF*57.30 WRITF(IW, 900)5, PC, THETA PL=PA+DP CO_TO_40 35 CONTINUE C C C ----CALCHLATIONS AWAY FROM THE STAGNATION PUINT PC=TRP(S,PSUAT,NPS) TS=TRP(S,TSDA1,NTS) THETA=S/RLE*57.30 WRITE(IW,900)S,PC,THETA V=V0*SORT(1.-PC) PL=PA+PC*DP RES=REFT0*S*V/V0 40 CONTINUE TF (THETA (T)5 0) (C ΤF (THETA .GT. 25.0) GO TO 50 CCC ----CYLINDER REGION H=.57*K1*PF**.4*RELE**.5/RLE*(1.-(THEIA/90.)**3) WRITE(IW.420) GU TO 105 CONTINUE 50 IF(RES .G1. 2.025) GU TO 60 CCC ----LAMINAR FLOW REGION H=.332*K1*PR**(1./3.)*RES**.5/S WRI1F(IW,430) GU TC 105 60 CONTINUE 60 CONTINUE IF(RES ,GT. 1,206) GU TO 100 C C C ----TRANSITION FLOW PEGIOM S11=S REST11=RES S1=S11=DS GD_TO_(70,95), NN 70 CUNTINUL CCCC CALCULATION OF PC, V THE TRANSITION REGION AND H AT THE BEGINNING OF PC=TRP(S1,PSDAT,NPS) V=V0*SORT(1,-PC) REST1=REFT0*S1*V/VO IF(ABS(HEST1-2,UES),IF, 100,) GD T(+75 S1I=S11+(S1-S11)/(RESI1-REST11)*(2,UES-REST11) S11=S1 REST11=RFST1

Þ	١.3	Pr	ogram Listing (Cont.)
(75	S1=S11 G0 1G 70 CUNITAUF HLAF=,332**1*PP**(1.73.)**FST1**.57S1 CALCULATION OF PC, V AND H AT THE END OF THF
			LPANSTTION REGION
			S/1=4.*S PC=TPF(S21,PSDAT,NPS) V=V0*SORT(1,=FC) PEST21=RFET0*S21*V/V0 S2=S21+2.*DS CUMTINUE PC=TPF(S2,PSDAT,NPS) V=V0*SORT(1,=FC) HES12=REFT0*S2*V/V0 IF(AHS(HEST2=1.2Fb) .LF. 100.) GC TO 90 S2I=S21+(S2-S21)/(RES12-REST21)*(1.2E6-EFST21)
	c		S21=S2 PEST21=REST2 S2=S2J GU 10 80 CONTINUE HTURP=0.0296*K1*PK**(1./3.)*REST2**.8/S2 NH=2 CUNTINUE
	с СС СССССССССССССССССССССССССССССС		FLGINDING OF THE TRADUITION REGION AND AT THE FLGINDING OF THE TRADUITION REGION AND AT THE
	1	.00	END OF THE TPANSITION REGION H=HLAM+(HTURB-HLAM)/1.F6*(RES-2.F5) WRITE(IW,440) GO TO 105 CONTINUE
	с с		TUREULENT FLOW REGIUN
		05	H=.0296*K1*PP**(1./3.)*RES**.8/S WRITE(IW,450) CUNTINUE
× .	č		CALCULATE LOCAL CONDITIONS
	c .		T5=R*TA*(1,-Pk**.5)*(1,-PL/PA)/CP/J CPU=.2365+7.6*TH/10.**6 EFF=H*(TS-TA-T2+T5)*SH/(WH*CPB*(TB-TS))
	Ċ	•	CUTEUT SIN=S*12. HPH=H*3600. TSF=TS-459.688 TBF=Tb-459.688 WRITE(IW,500) SIN,HPH,TSF,TEF,EFF DO=H*DS*(IS-TA-T2+T5) DTP=DQ/(WB*CPb) TB=TB-DTB DEFENDENCE
	1	160	EFFIC(I)=EFF+EFFIC(I) SINCH(I)=SIN S=S+DS CONTINUE WRITE(IW,1300) DO 165 I=1,N EFFAVG=EFFIC(I)/NCASF WRITF(IW,1100) SINCH(I), EFFAVG CONTINUE WHITE(IW,1200) NCASE
			CONTINUE CONTINUE A-12

A.3 Program Listing (Cont.)

Program Listing (LONL.)) FURMA1(111,40A2)) FURMA1(5X,'** CYLINDFR **')) FURMA1(5X,'** LAMINAP **')) FURMA1(5X,'** TUPBDUFNT **')) FURMA1(5X,'** TUPBDUFNT **')) FURMA1(4515.2, F15.3//)) FURMA1(4715.2, F15.3//)) FURMA1(7/22X,'LEADING FUGE KANIUS', KX, F5.3,'FT'/ 222X'LIP HIGHLIGHT DIAMETER', 4X, F6.3,'FT'//)) FURMA1(7/22X,'LEADING FUGE KANIUS', KX, F5.3,'FT'/ 1/22X,'HEATED ARFA PER FOUT SPAN', F7.3,'SOFT'/ 222X'LIP HIGHLIGHT DIAMETER', 4X, F6.3,'FT'//)) FURMA1(7/22X,'LEADING FUGE KANIUS', KA, F5.3,'FT'/ 1/22X,'HEREL', 17X, F5.1,'KTAS'/22X,'HEFEC FLOW PER FNGINF', 5X, 2F4.1,'LF/NIM'/22X,'PLFED TEMP', 15X, F5.1,'FT'/22X,'AND TEMP', 17X, F5.1,'F' 1D TEMF,F)', 7X,'EFF'/)) FURMA1(14, 'SC', F15.6, 5X,'PC=', E15.8, 5X,'THF1A = ', F6.2)) FURMA1(14, 'SS', E15.6, 5X,'PC=', E15.8, 5X,'THF1A = ', F6.2)) FURMA1(141, 10X, 'MURMER OF CASES AVFRAGED = ', I3)) FURMA1(141, 10X, 'S(IN)', HX,'EFF(AVG)'//) CALL EXIT FND

A.4 Function TRF Listing

FUNCTION TPP(S, PSDAT, IMAY) DIMENSTON PSDAT(16, 2) DD 140 K=1, IMAX, 2 IF(S*12, -PSDAT(K+2, 1))):, 130, 130 130 CDETINUE TF(PSDAT(K+2, 1)-ESDAT(F+3, 1)) 140, 140, 150 140 CDETINUE PC=FSDAT(K, 2)+(S*12, -PSDAT(K, 1))*((PSDAT(K+1, 2)-PSFAT(K, 2))/ 1(PSDAT(K+1, 1)-PSDAT(K, 1))+(S*12, -FSDAT(F+1, 1))/(PSFAT(K+2, 1)-2FSFAT(K, 1))*((PSDAT(K, 1))+(S*12, -FSDAT(F+1, 1))/(PSFAT(K+2, 1)-3PSDFT(K+1, 1))*((PSDAT(K+1, 2)-PSFAT(K, 2))/(PSDAT(K+2, 1)-3PSDFT(K+1, 1))*((PSDAT(K+1, 2)-PSFAT(K, 2))/(PSDAT(K+1, 1)-PSDAT(K, 1))) 4) TRF = PC FUE

.'

A-14

. •

A.5 Sample Input Data

A.6 Sample Output Data

NOUFL 35 FAGINE EALET LIP BLEED ATE CHANNEL EFFTUIENCY

LEADING EDGE RAPINS 0.125 FT HEATED AREA FER FORT SEAN 0.558 SUFT DTP HIGHLIGHT DIAMETER 2.237 FT

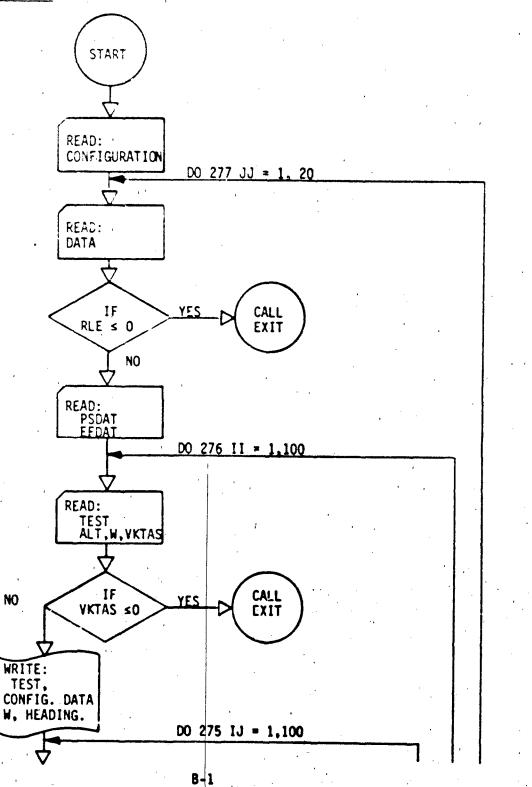
CONFIGURATION TOA UPPER LIP TAF CORRECTED

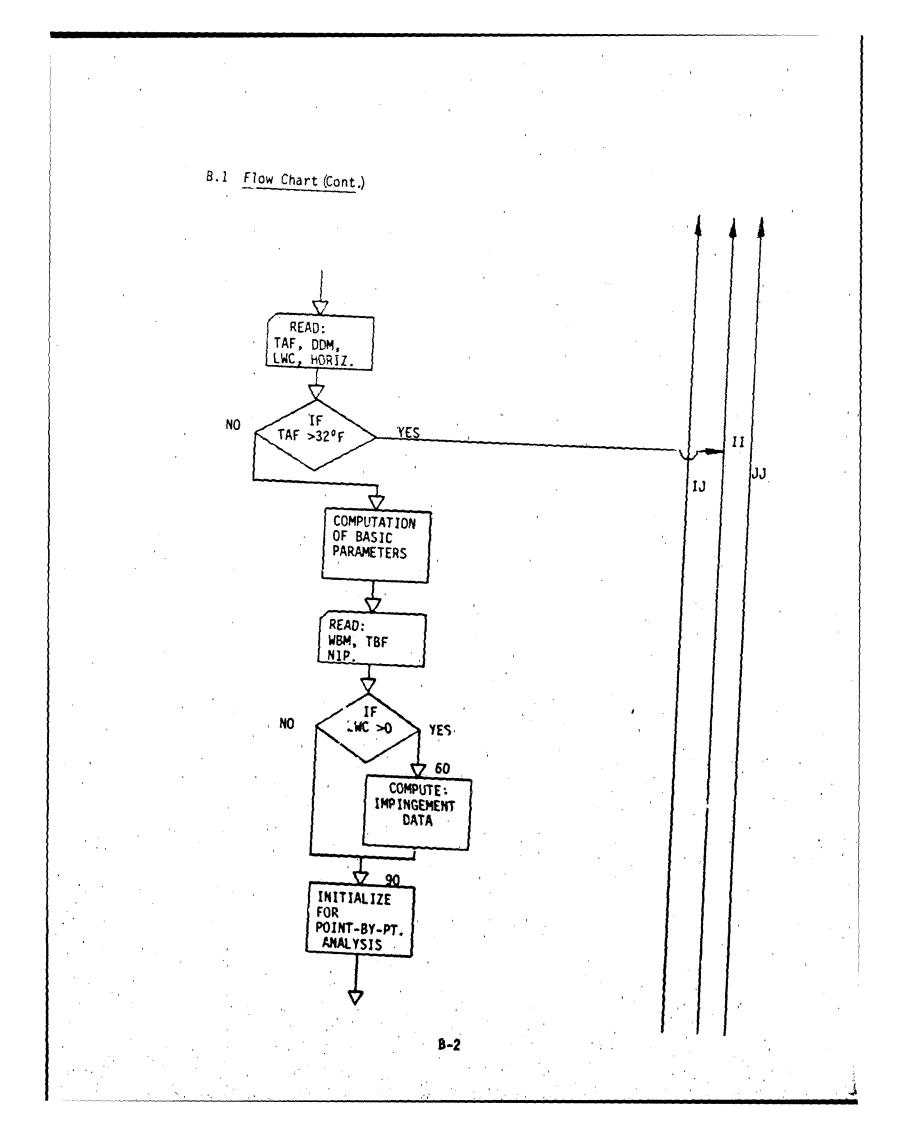
ALTITUTE		3154.0	F1
AND TEMP		1.3	
AIRSPEED		224.8	
	PFP ENGINE		LE/ATA
BLEED IEMP		402.4	r

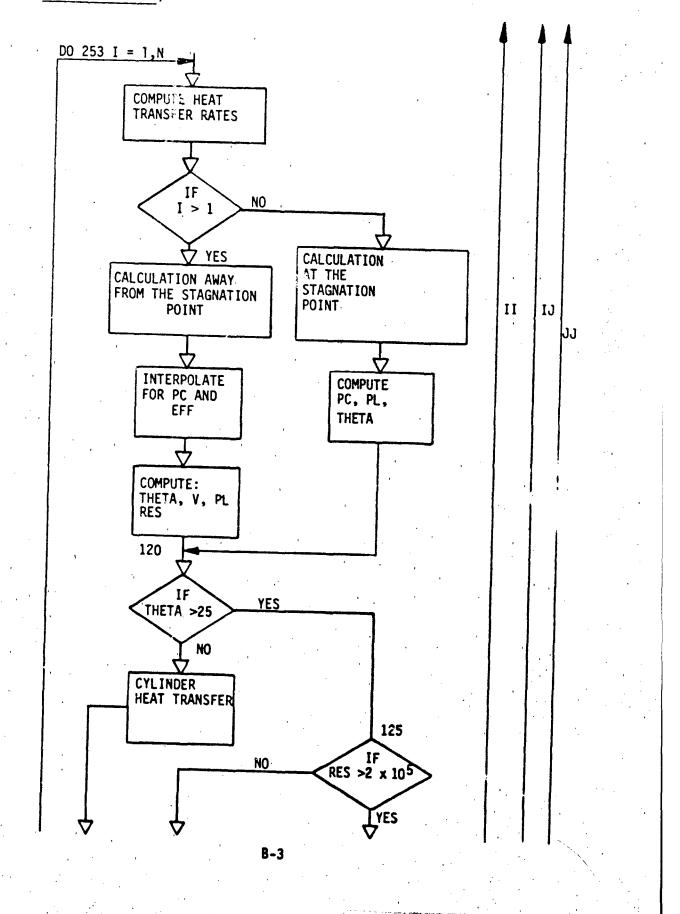
		•		
	S(IN)	(H PER HR) (SKIN TEM	P,E) (BLEED TURP,E)	FFE
s=	0.0000000000000000000000000000000000000	PC= 0.1000000++01	1564A = 0.00	•
	** CYLINDEH ** 0.00	43.00 184.0	0 402.40	0.001
S=	0.416509998-01	PC= 0.96999057F+00	THETA = 19.10	
•	** CYLINDEF ** 0.50	42.59 192.0	ú 392.54	U. 5 ³⁴ 5
5=	0.833339992-01	PC= 0,12996030F+00	1HE DA = 38.20	
	** TRANSTTION ** 1.00	21.74 204.0	0 382.32	0.422
S=	0,12500100E+00	PC==0.14700172E+01	THELA = 57.30	
	$\begin{array}{r} ++ \text{ TRANSITION } ++ \\ 1.50 \end{array}$	39.10 223.0	0 376.70	0.4+1
5=		PC=-0.12999848F+01	THETA = 76.40	
	** TRANSITION ** 2.00	47.34 160.0	0 365.44	. U.c2n
5=	0,208335001+00	PC=-0.93999022E+00	THETA = 95.50	
	** TRANSITIUN ** 2.50	52.61 100.0	0 355.нз	U.33n
S=	0.250002000+00	PC=-0.80999613E+00	IPETA = 114.60	
	** TRANSITION ** 3.00	59-56 94-0		1. 35 4

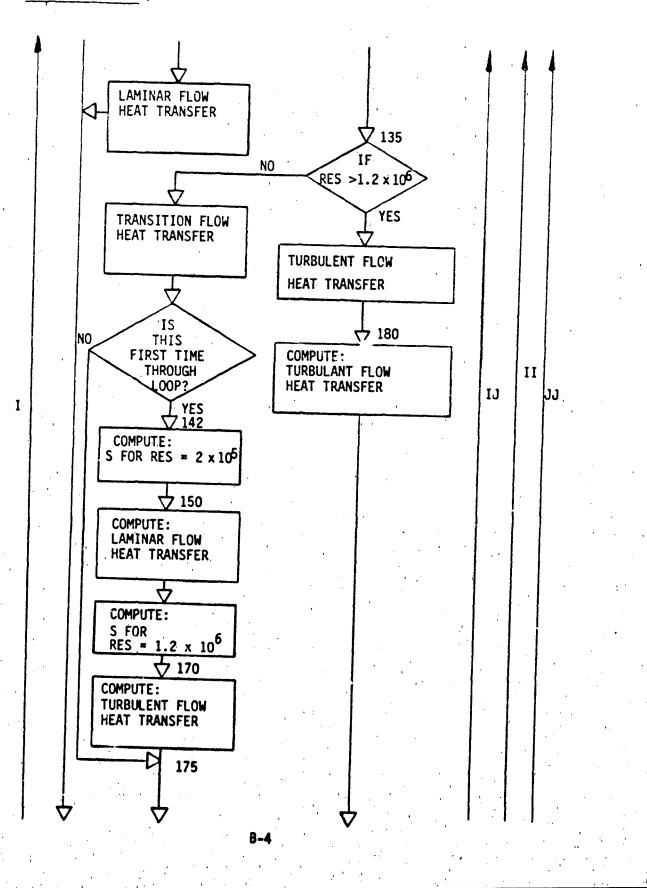
.6	Sample Output	Data (Cont.)
	S(IN)	FFFTAVGI
	9.60 1.50 1.50 2.50 2.50 3.60	0.627 0.658 0.445 0.445 0.447 0.477 0.477 7.326

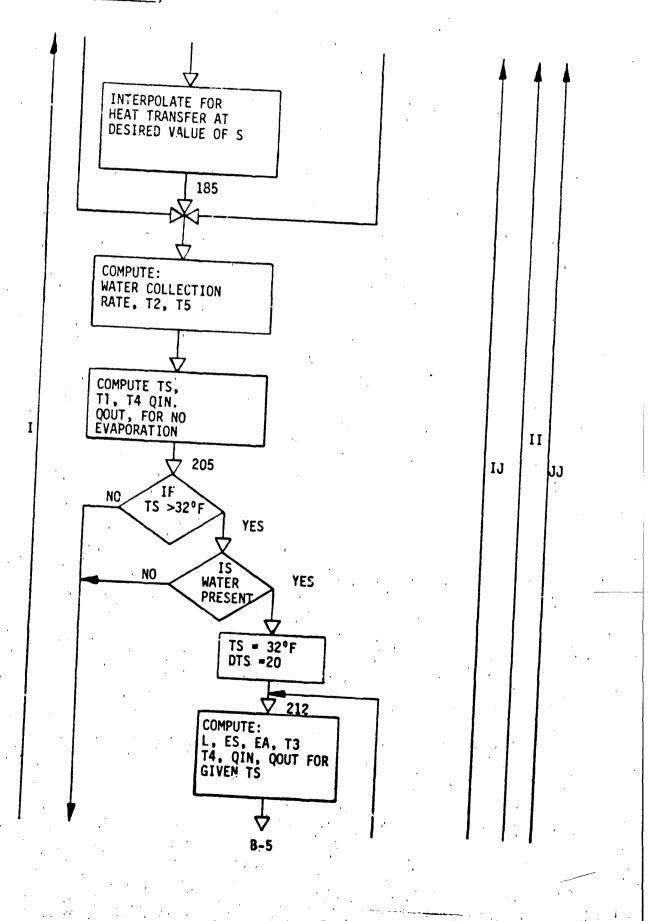
NUMBER OF CASES AVERAGED = 15

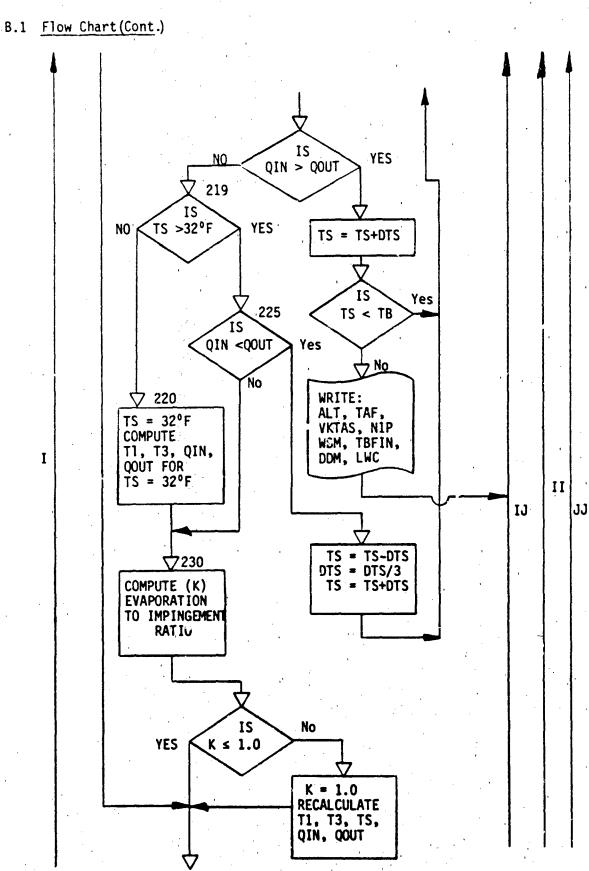

A

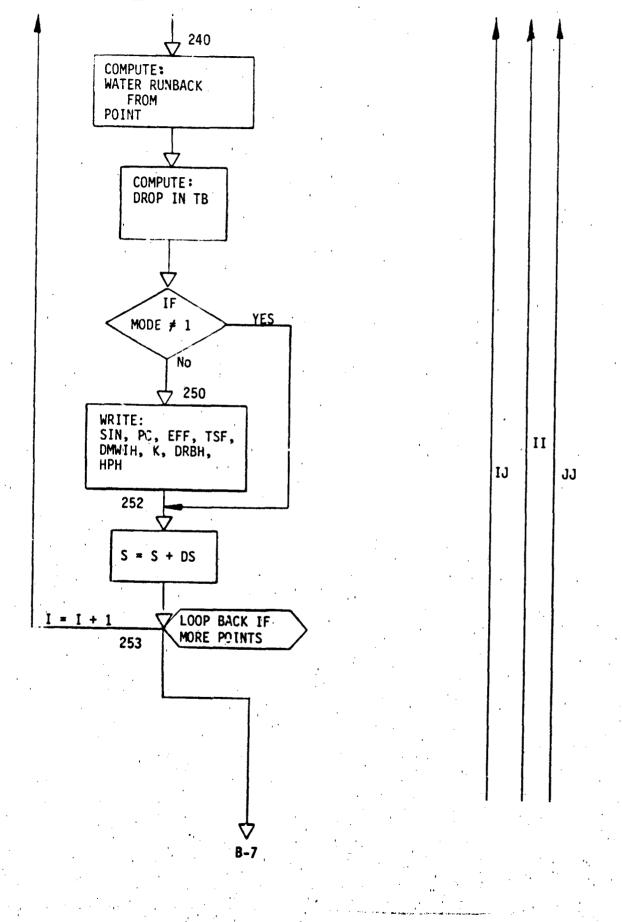

•

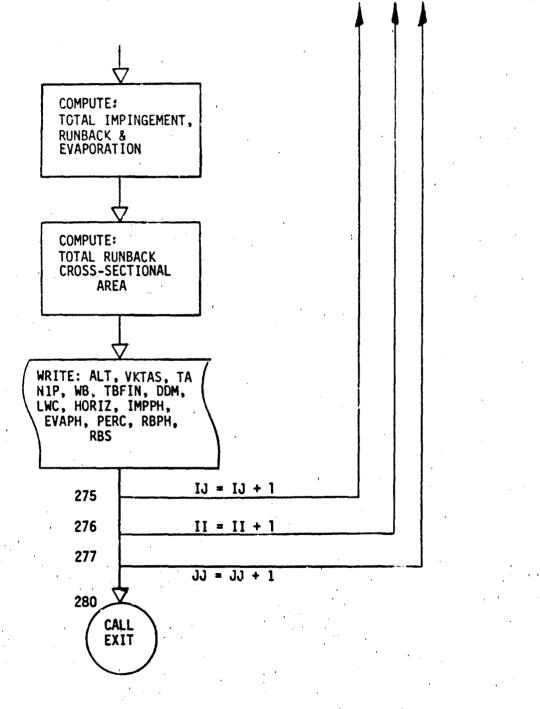

A-17


APPENDIX B - ICING ANALYSIS PROGRAM


B.1 Flow Chart







· B-6

B.2 Input and Operation

MODE - 1

This mode of operation reduces experimental data to check for accuracy. An expanded output shows results of intermediate calculations in the pointby-point analysis.

ARD 1 (20A4)		Title
		This card can contain up to 80 columns of
		alphanumeric information. It will be used
- -	¥ .	as the heading on the putput data sheet
		(20A4 format).
CARD 2 (1F10)		Mode
2		Enter a "1." in column 1 for Mode I
		operation (F10.3 format).
CARD 3 (8F10)		Nacelle Geometry.
		This card has 8 fields of 10 columns each
		to contain the variables C, TOC, RLE, DIA,
		SH, SW, CDO. (F10.3 format).
•		
Column 1	C -	Chordwise length of nacelle in feet.
Column 11	TOC -	Thickness ratio (maximum nacelle thickness/
и и		chordwise length) non-dimensional.
Column 21	RLE -	Radius of curvature for the leading edge of
		nacelle inlet lip in feet.
Column 31	DIA -	Nacelle inlet highlight diameter in feet.
Column 41	SH -	Streamwise length of the heated surface in
. ,•	•	feet. (Heated area per foot circumference)
Column 51	S₩ -	Aircraft wing area in square feet.
Column 61	CDO -	Drag polar term (C _{Do} or C _{Dintercept}).
Column 71	DCD -	Drag polar term (k or C _D) slope
•		$(C_{D} = CDO + (DCD)C_{L}^{2} Drag polar).$

B.2 Input and Operation (Cont.)

CARD 4 (15F5)

Pressure Coefficient Table.

Pressure Coefficient Table.

This card has 15 fields of 5 columns each to contain streamwise distance measurements, from stagnation point to point under analysis, in inches. The values shall begin at zero (stagnation point) and increase at any desired interval until the aftmost heated region is reached (F5.0 format).

CARD 5 (15F5)

CARD 6 (10F7)

Efficiency Profile Table. This card has 10 fields of 7 columns each containing the streamwise distance measurements from the stagnation point to the point under analysis, in inches. The values increase at any desired interval until the

aftmost heated region is reached (F7.3 format).

This card has 15 fields of 5 columns each to contain pressure coefficient values for the corresponding points on card 4 (F5.0 format).

CARD 7 (10F7)

Efficiency Profile Table.

This card has 10 fields of 7 columns each containing the channel efficiency values for the corresponding points on Card 6. (F7.3 format).

CARD 8. (20A4)

Test Title.

Test number and any pertinent information up to 80 columns (20A4 format).

CADD O	105	101) Flight Deventors This could be 2 fields of
CARD 9	16)	10)			Flight Parameters. This card has 3 fields of
					10 columns each to contain the variables ALT,
			•		W, VKTAS (F10.3 format).
Co	lumn	1	ALT	Ŧ	Altitude (MSL) of aircraft in feet.
Co	lumn	11	W	-	Weight of aircraft in pounds.
Co	lumn	21	VKTAS	-	True airspeed of aircraft in knots.
CARD 1	0 (4F	10))		Icing Conditions.
					This card has 4 fields of 10 columns each to
					contain the variables TA, DDM, LWC, & HORIZ
					(F10.3 format).
Co	lumn	1	TA	-	Ambient Temperature (in ^o F).
Co	lumn	11	DDM	-	Water droplet median diameter in microns.
Co	lumn	21	LWC	-	Liquid water content of surrounding air in grams/cubic meter.
Co	lumn	31	HORIZ	-	Horizontal cloud extent in statute miles.
CARD 1	1 (3F	10))	1 -	Bleed Air Data.
				1	This card has 3 fields of 10 columns each to
<i>.</i> ,					contain the variables WBM, TBIN, N1P (F10.3)
					format).
Co	lumn	1	WBM	-	Bleed air mass flow rate per engine in lb/min.
· Co	Tumn	11	TBIN	• •	Bleed air temperature in °F.
. Co	lumn	21	N1P	-	Percent engine RPM.

In this mode a dummy card with "33." punched starting in column 1 should follow card 11. This will loop the routine back to read in a new set of test data. Cards 8, 9, 10 and 11 followed by a "33." card should be repeated for as many test cases desired up to 100 tests.

One blank card following a dummy "33." card will allow the input of new mode, nacelle geometry and pressure and efficiency data cards. Two blank cards following a dummy "33." card will terminate the program.

B.2 Input and Operation (Cont.)

Mode II

This mode of operation is for icing prediction under given flight and icing conditions. Intermediate information or calculations are not shown.

INPUT PREPARATION FOR MODE II

CARD 1 (20A4)

Title.

CARD 2 (1F10)

CARDS 3-7

CARD 8 .

CARD 9 (4F10)

CARD 10 (3F10)

Prepared same as for Mode I operation.

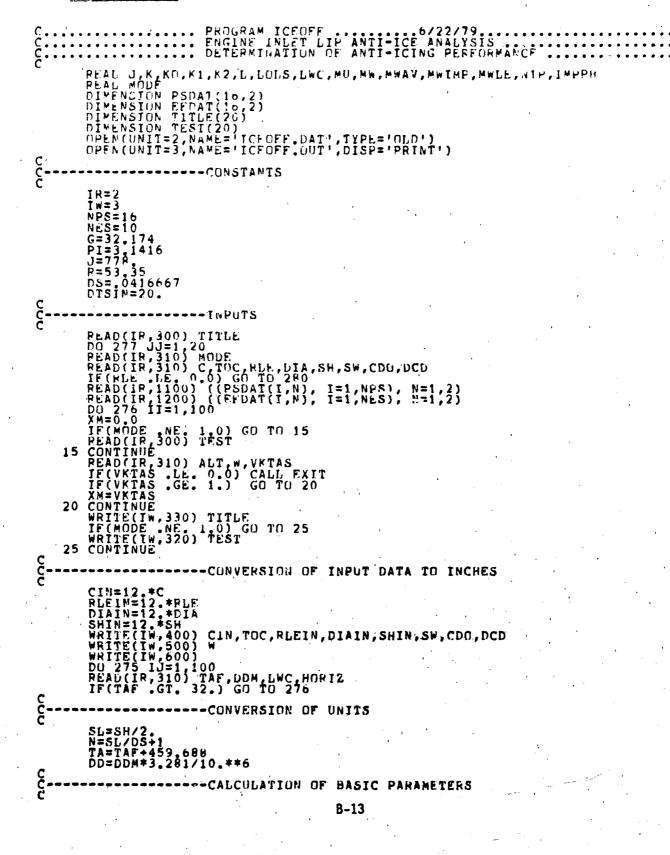
Mode. Enton a 2 in column 1 for Mode II operat

Enter a 2. in column 1 for Mcde II operation (F10.3 format).

Same input as described under Mode I operation.

Flight Parameters.

This card ha: 3 fields of 10 columns each to contain the variables ALT, W, VKTAS, (F10.3 format). These variables are input the same as for Card 9 under Mode I operation. Icing Conditions.


This card has 4 fields of 10 columns each to contain the variables TA, DDM, LWC, & HORIZ (F10.3 format). This data is input the same as for Card 10 under Mode I operation. Bleed Air Data.

This card has 3 fields of 10 columns each to contain the variable. WBM, TBIN and N1P (F10.3 format). This data is ing the same

as for Card 11 under Mode I operation.

In this mode up to 100 sets of cards 9 and 10 may follow a Flight Parameter card. A dummy "33." card following a card 9 and 10 set will allow input of a new Flight Parameter Card 8. One or two blank cards following a dummy "33." card has the same effect on the program as during Mode I operation.

P.3 Program Listing

1:

B.3 Program Listing(Cont) A=SQRT(1.4*G*H*TA) IF(XM .LF.0.0) GU TC 40 VKTAS=XM*A/1.6878 VU=VKTAS*1.6878 CP=.2365+7.6*TA/10.**6 WU=7.475*1A**1.5/(TA+216.)/10.**7 K1=(4.722+.0694+*1A)/10.**7 PR=CP*MU/K1 PA=2116.21/EXP(AL1/(27710.-.098774*ALT)) PHC=PA/TA/F PEFTC=REC*VU/MU PEIFTC=REC*VU/MU PEIFTC=REC*VU/MU PEIFTC=REC*VU/MU 40 RELE=REFTO+2.*RLE XM=VO/A C C C C -----CALCULATION OF BLEED-ATR DATA DP=PH0/2.*V0*V0/G CL=*/DP/S* EN=(CDD+DCD*CL*CL)*DP*S#/2. -INSERT CALL FOR ENGINE PERFORMANCE PROGRAM TO UPTAIN BLEED AIR FLOW RATE AND TEMPERATURE OR READ THIS DATA FROM INPUT PEAD(1R,310) WBM,1HF,N1P TBIN=1BF+459.088 WB=WBM/60./PI/DIA C C C ----CALCULATION OF IMPINGEMENT DATA IF(LWC .GT, 0.0) GD TO 60 MWLE=0 GU 10 90 GO 10 90 60 CUNTINUE RED=REFTC*DD JF(KED_GT. 200.) GO TO 70 68 LOIS=.98-.134*ALOG(RED) GO IO 71 70 LOIS=.74-.0887*ALUG(RED) 71 K2=.108*VO/MU/C*DD*DD*G KU=N7*LULS TF(KD_GT...01) GU TO 80 IF(K0 .GT. .01) GU TO 80 IF(K0 LT. .004) GO TO 77 EN=.0873*(ALOG(K0)+5.522) GO TO 85 75 GD IU 85 EME0. GD TO 85 IF(KO .GT. .4) GU TO 83 EME.08+.31*(2.+.4342*ALUG(KO))**1.55 GD IO 85 WRITE(IW,900) KO GU IO 275 WHEVDELECTTOC*C*EM*.623/10.**4 77 80 83 85 WMEVO+LWC+TUC+C+EN+.623/10.++4 MWAV=WM/SH MWLE=2.+FWAV 90 CUNIINUE PUINT-RY-POINT ANALYSIS OF HEAT/MASS THANSFEH RELATIONSHIPS STARTING AT STAGNATION PUINT AND ENDING AT AFTMOST PUINT OF HEATED -PUINT-AY-POINT REGION HEATED REGION ----INTTIALISE CONDITIONS AND START S=PSDAT(1,1)/12. NN=1 TB=TBIN THEINETBIN-459.688 DRB=0.0 B-14

B.3 Program Listing(Cont.)

TOTIM=0.0 DO 253 I=1,N IF(5 .LE. SL) GO TO 100 ระรับ 100 SP=5/SL C C C -CALCULATION OF LOCAL HEAT TRANSFER COLFFICIENT IF(I .6T. 1) GO TÙ 115 CCC ---CALCULATION AT THE STAGNATION POINT PC=PSUAT(1,2) PL=PA+DP THETA=S/RLF+57.30 PES=0.0 GO TO 120 115 CUNTINUE CCC ----CALULATION AWAY FROM THE STAGNATION POINT PC=1PP(5, PSDAT, NPS, IW) THFIA=S/PLE*57, 30 V=VO*SORT(1.-PC) PL=PA+PC*DP PES=REF10*S*V/VU 120 CONITNUE ĨĒ (THETA .GT. 25.) GO TO 125 CCC ----CYLINDER REGION H=.57*K1*PR**.4*RELE**.5/MLE*(1.-(THETA/90.)**3) GO TO 185 125 CUNTINUE IF (RES .GT. 2.E5) GU TO 135 CCC ---DAMINAR FLOW REGION-H=.332*K1*PK**(1./3.)*RES**.5/8 GU TO 185 CONTINUE 135 IF(RES .GT. 1.216) GO TO 180 CCC -TRANSITION FLOW REGION S11=S REST11=HES S1=S11-DS GU TO (142,175), NN 142 CONTINUE CCCC -CALCULATION OF PC, V THE TRANSITION REGION AND H BEGINNING OF AT THE PC=TRP(S1,PSDAT,NPS) V=V0*SGRT(1,-PC) REST1=REFT0*S1*V/V0 IF(ABS(REST1-2,0E5) LF. 100.) GO TU 150 S1I=S11+(S1-S1)/(REST1-REST11)*(2.0E5-REST11) 511=51 RESTII=RESTI 51=S1I GU TO 142 CONTINUE 150 HLAM=.332+K1+PR++(1./3.)+REST1++.5/S1 CCCC CALCULATION OF PC, V AND H AT THE END OF THE TRANSITION REGION 521=4.*5 PC=TRP(521,PSDAT,NPS) V#V0*SQRT(1.-PC)

B.3 Program Listing (Cont.)

```
REST21=REFTU*S21*V/VU
S2=S21+2.*DS
CUNTINUE
PC=TRP(S2,PSDAT,NPS)
V=VU*S0FT(1.-FC)
   - 160
   V=V()*SQFT(1.-PC)

WES12=REFT0*S2*V/VO

IF(AB5(WEST2-1.2E5) .LE. 100.) GC TU 170

S2I=S21+(S2-S21)/(WES12-RESI21)*(1.2E6-RESI21)

S21=S2

PEST21=WEST2

S2=S2I

GU 10 160

170 CUNTINUE

HIURB=0.0296*K1*PC=====
             HIURB=0,0296*K1*PR**(1,/3,)*RLS12**.8/S2
              NN = 2
     175 CONTINUE
COCOC
                                           INTERPOLATION FOR H BETWEEN THE VALUES AT THE
BEGINNING OF THE TRANSITION REGION AND AT THE
END OF THE TRANSITIUN REGION
    H=HLAM+(H1URB-HLAM)/1.F6*(HES-2.E5)
GU TO 185
180 CUMTINHE
Č-
                                    ----TURBULENT FLOW REGION
             H=.0796+K1+PR++(1./3.)+KFS++.H/S
CCC
                      ----- CALCULATE LUCAL IMPINGEMENT(+KUNBACK) RATE
    185 IF(SP.,GT.,3333) GU 10 188
MWIMP=MwLE*(1.-,355*(3.*SP)**1.75)
GU T(189
188 MWIMP=MwLE*1.177*(1.-SP)**1.6
189 Mw=MWIMP+DRE
             TUTINETOTINENWIND
с-
с-
                         ----- CALCULATE T2, T5
             PL=PA+PC*DP
T2=V0*VU/(2.*CP*G*J)*(PH**.5+CP*NW/H)
T5=(1.-PR**.5)*R*TA/CP/J*(1.-PL/PA)
CCCCC
                               ----CALCULATE TS, T1, T3, T4
                                           CASE 1. NU EVAPURATION
             K=0.
CPR=,2365+7.6*TB/10.**6
EFF=THP(S,EFDAT,NES)
TS=(WB*CPB*EFF*TR+H*SH*(TA*(
    200
                                                                               +#W/H)+12-T5))/(WB*CP6*6F
          1 TS3(WB+CPB+EFF+10+1+0H-(1A+(1

1MW/H))

T1s(TS-TA)=(1.+HW/H)

QIN =WB+CPB+FFF+(1R-TS)

QOUT=H+SH+(T1-T2+T5)

IF(TS .LE. 491.6R4) GO TO 240

IF(MW .LE. 0.) GO TO 240
    205
00000
                                ----CASE 2, WITH EVAPORATION
FIND EQUILIBIPIUM VALUE OF TS
SUCH THAT GIN#GOUT
           TS=491,6H8
DTS=115IN
T1=(TS-TA)*(1,+WW/H)
L=134W,21-.562*TS
ES=PP(TS)
T3=0.622*L*ES/CV/PL*144.
EA=PP(TA)
T4=0.622*L*EA/(P/PA=144.
OIN=WA=CPB+EFF*(TB-TS)
                                                                                BY ITERATING BETWEEN 442 AND TH
    210
     212
                                                                       B-16
```

B.3 Program Listing (Cont.) 0001=H*5H*(T1-T2+T3-T4+T5) IF(GIN .LE. GUNT) GO TO 219 С IF QIN.GT. GOUT, INCREMENT TS BY DIS TS=TS+DTS 13-13-13-13 IF(15, LT, TA) GO TU 212 WRTTF(IW, 700) ALT, VKTAS, TAF, N1P, WBM, TBFIN, CDM, LWC GU TO 275 219 IF(15, GT, 491, 686) GO TO 225 IF QIN.LT.GOUT BUT TS.LT.491.588, FGUILIBIRIUM IS = 491.688 FIND EVAPORATION RAIE FUR TO = 491.558CCC 220 TS=491.688 QIN=WH*CPB*EFF*(TB-TS) QUI1=QIN TI=(TS-TA)*(1.+MW/H) T3=QUIT/(H*SH)-(T1-T2-T4+T5) GUT0 230235 TE(COUT/OIN = F-1-001) GUT 225 IF (GOUT/GIN .LE. 1,001) GU TO 230 TE DIN.LT.OOUT BUT IS.GT.492. Decrement TS by Smaller and Smaller Amounts TU Ustain Convergence CCC TS=TS-DTS DIS=DIS/3. TS=TS+DTS GO 10 212 ç IF OIN = OUUT, CONFIRM THAT EVAPORATION RATE DOES NOT EXCEED IMPINGEMENT RATE 230 K=(T3-T4)+H/(L+HW) IF(K .LE. 1.) GO TO 240 C C IF EVAPORATION RATE FACEFUS IMPINGENEN Rate, FIND NEW TS FOR FULL EVAPORATION K=1 73=14+1.+MW/H T1=(T5-TA)+(1,+MW/H) QUNT=H*SH*(T1-T2+T3-T4+T5) C C C C ---- CALCULATE ELEMENTAL RUNBACK RATE 240 DRE=(1.-K) #HW CCC ----- CALCULATE DROP IN TH AND GO TO NEXT PUTHT(SEGMENT) DO=DOUT+DS D1P=D0/(WE*CPb) T8=TP-D18 TB=TR=DTB SIN=S=12. TSF=TS=459.6R8 HPH=H=3600, DRBH=DRU=3600.4DS IF(MODF .NE. 1.0) GO TO 252 250 CONTINUE WHITE(IW,1000) SIN,PC,EFF,TSF,DMWIH,K,DRBH,HPH 252 CUNTINUE S=S+DS SIS+DS 253 CUNTINUE CCCC ----- CALCULATE TOTAL IMPINGEMENT, EVAPORATION AND RUNBACK PATES RBPH=DRB=3600, #DS IMPPH=TOTIM=3600.*DS EVAPH=IMPPH=RBPH IF(INPPH .GT. 0.0) GO TO 262 260 PERC=0. GO TO 265 262 PERC=EVAPH/IMPPH=100. C CALCULATE PUNPACE CROSS-SECTIONAL AREA С 8-17

· . . .

B.3 Program Listing (Cont.)

```
265 TIME=HORIZ/VKTA5/1.151
FBS=DRB+3600.*D5*11ME/62.4*144.
```

OUTPUT

CCC WRITF(IW,800) AL1,VKT 1 EVAPH,PEKC,KHPH,RPS 275 CONTINUE 276 CUNTINUE ALT, VKTAS, TAF, N1P, WRM, TBFIN, DDM, LWC, HORTZ, IMPPH, 276 277 277 CONTINUE 280 CUNITAUE 300 FURMA1(20A4) 310 FURMA1(8F10.3) 320 FURMAT(1H0,5X,20A4//) 400 FORMAT(23X,'NACELLE LENGTH',F18.2,' IN'/23X,'THICKNESS-TU-LENGTH 1RATIO',F8.3/23X,'LEADING-EDGE RADIUS',F13.2,' IN'/23X, 2'LIP DIAMETER',F20.2,' IN'/23X,'STPEAMWISE SURFACE'/23X,'LENGTH 30F HEATED AKFA',F11.2,' IN'/23X,'WING AREA',F23.2,' SU'FT'// 423X,'URAG PULAP...CD=',F6.4,'+',F6.4,'*CL*CL'/) 500 FURMAT(23X,'WEIGHI',F26.2,' LF'//) 600 FORMAT(23X,'WEIGHI',F26.2,' LF'//) 600 FORMAT(3X,'AL'T VEL AME PERC ALEFD ALEFD DRUP LWC HGW IMPING 1 EVAP PEHC FURBK RUNHF'/13X,'TEMP H1 FLOW TEMP DIA (GM/ EXT 2 HATE RAIF EVAP RATE SEC1'/' (FT) (KTAS) (F)',6X,'(FPM) (F) 3 (MIC) CM) (M) (PPH) (PPH)',6X,'(PPH) (SUIH)') 700 FORMAT(FR.0,2F5.0,F6.0,F7.2,F6.0,F5.0,F8.3,5X,'NO CUNVFRGENCE ON 1TS') 800 FOPMAT(1H0,F7.0,3F5.0,F6.2,2F5.0,F6.3,3F6.2,F5.0,F6.2,F6.3) CONTINUE. EXT (F) 1TS') 800 FUPPAT(1H0,F7.0,3F5.0,F6.2,2F5.0,F6.3,3F6.2,F5.U,F6.2,F6.3) 900 FUPPAT(11X,'K0=',E10.3,1CX,'CUTSIDE ASSUMED HANGE'/) 1000 FUPPAT(/5X,'SIN=',F6.3,3X,'PC=',F5.2,3X,'EFF=',F5.3,3X,'TSF=',F6.1 1/10X,'DMWHH=',F5.1,3X,'K=',F5.3,3X,'DRBH=',F5.1,3X,'HPH=',F5.1) 1200 FUPPAT(16F5.2) 1200 FUPPAT(10F7.3) CALL EXIT FNC

B.4 Function PP Listing

.

B-19

٠.

B.5 <u>Sample Input Data</u>

MODEL 35 H	NGINE THE	ET LIP ANT	1-ICE A	NALYSI	S = 12 0'	CLOCK	POSILION	
1. 7.814 0.0 0.5	.058 1.0 1.5	0.125	2.237		0.558	253. 5.0	.0225	.050
	5 1.0).698 0.4	45 0.897	4 - 81	- 77 2.5 0.31	81 - 92- 3.0 7 0.328	3.5 0.350	4.5 0.350	
TEST RUN 3195. 16.33 11.98	JA - URÝ 13000, 348,9	CORRECTE 235.8 0.	0.					•
33. TEST RUN 3181. 15.86 14.94	2A - DHY 13000, 350,6	CORRECTE 235.9 0.	0.					
33. TEST RUN 3189. 16.08 12.14	3A - DPY 13000. 400.9	CORRECTE 236.9 0.	0.		•			, . ,
33. TEST RUN 3179. 15.37 <u>1</u> 5.0	4A - DRY 13000. 399.3	CORRECIE 236.4 0.	а. О	·.				
33. TEST RUN 3123. 15.80 12.12	54 - DPY 13000. 449.1	CORRECIE 235.4 0.	ъ о.				•	
33. TEST HUN 3150. 16.44 15.05	6A - DPY 13000, 451,3	COKREC1F 234.2 0.	р О.					
33. TEST RUN 3135. 1.48 12.14	7A - DHY 13000. 352.2	CORREC1F 231.7 0.	0.					
33. TEŠT RUN 3160. 0.71 15.06	RA - DRY 13000. 352.2	CORRECTE 232.5 0.	0.		• •			
33. TEST RUN 3160. 0.50 12.19	94 - DRY 13000. 399.3	CORREC11 232.7 0.	D 0.		• •	· .	•	
33. TEST RUN 3154. 1.33 14.95	10A - DRY 13000. 402.4	CORRECTE 224.8 0.	0.	-	· · ·			· · · ·
33. TEST RU 3193. 1.91 12.07	$\begin{array}{c} N & 11A - 1 \\ 13000 \\ 0 \\ 451.1 \end{array}$	226.1 0.	TED 0.	•	 	·	• • •	· · · · ·
33 TEST RU 3187. 3.23 14.97	N 12A - 1 13000. 453.2	226.0	T FD					•
33 TEST RU 1756 -9.95 11.94		DRY CURPEC' 142.6	TED		•			

B.5 Sample Input Data (Cont.) TEST RUN 144 - DKY CURRECTED 1740. 1740. 1740. 14.94. 33. TEST RUN. 0. 349.0 TEST RUN. 1748, 1 -6.58 C 12.09 4 3. TEST RUN 1738, -6.87 C 15.46 3 13000. DRY CURPECTED 0 402. 164 - DRY CURRECTED 13000. 142.2 0 399.7 15.46 33. TEST RUN 1740. 12.01 174 - DRY CURRECTED 13000. 142.7 0. 450, 12.01 4 33. TEST RUN 1740. 1 -7.22 0 184 - DRY CURRECTED 13000. 142.4 452.6 -7.22 15.04 33 TEST RUN 2794 -22.63 0 12.09 33 TEST RUN 2816 19A - DRY CORRECTED 0 350.8 20A - DRY CURRECTED 13000. 197.6 2816. -20.88 15.19 33. TEST RUN 350.2 21A - DRY CURRECTED 000. 196.3 794 -20.54 12.09 33 FEST RUN 13000. 401.1 22A - DRY CORRECTED 000. 196.0 2786 -20,76 14,89 13000. 0 401.3 -20,75 14.89 33 TEST RUN 2775,1 120,66 12.03 33 TEST RUN 2741,1 23A - DRY CORRECTED 13000. 6 451,1 24A - DRY CORRECTED 000. 194.1 2741 -20.51 14.76 33. 13000. 451.7

B.5 <u>Sample Input Data (Cont.)</u>

MODEL 35 ENGINE INDET UP ANTI-ICE ANALYSIS - 12 O'CLOCK POSITION 1. 7.814 .0225 .050 ¹0¹5 47 0.0 1. 0.627 0.598 TEST KUN 604 -1300 45 0.897 (COKRECTED 231.0 .901 4.5 0.445 WF1 0.609 TEST RUN 60A - WF1 3208. 13000. 10.05 10.45 12.09 351.6 33. TEST RUN 61A - WFT 3266. 13000. 17.45 10.29 15.16 351. 20.5 CORRECTED 13000. 18.29 351, 234.1 20.8 17.45 18.29 15.16 351 33. TEST RUN 62A - WET 3295, 13000. 14.82 18.25 12.11 400.2 CORRECTED : 235.2 20.9 12.11 33. TEST RIIN 63A 3259. 130 17.4 15.30 398 33. 444 COKREC1FD 234.5 +090 3A - WFT 13000. 18.30 20.8 33. TEST HIN CORRECTED 233.0 20.7

 TEST RUN 65A - wF1

 2831.
 13000.

 18.49
 16.21

 11.35
 452.1

 33.
 13000.

 TEST RUN 66A - wET

 3253.
 13000.

 1.02
 20.66

 12.02
 35.4

 33.
 TEST RUN 67A - wET

 3262.
 13000.

 1.95
 20.70

 15.17
 351.5

 33.
 51.5

 CORRECTED. 234.7 20.8 CONRECTED 231.0 20.5 CORRECTED 231.1 20.5 15,17 151,5 33. TEST RUN 68A - WET 3297. 13000. 2,83 20,58 12.03 399.5 33. COHRECTED 233.0 .757 20.7 CORRECTED 232.2 .760 33. TEST RUN 69A - WET 3280. 13000. 3.53 20.65 15.16 401.3 33. TEST RUN 70A - 1 3266 13000. 20.6 70A - WET CURPECTED 13000. 231.2 20.7 .763 20 451.1 3266. 3266. 2.01 20.7 12.10 451.1 33. TEST RUN 71A - WET COKRECTED 3291. 13000. 232.6 40 20.64 .760 41.93 452.4 --FT CORRECTED 20.5 TEST RUN 71A 3291. 13000 2.40 20.64 14.93 452.4 33. TEST RUN 72A 1637. 13000 -2.97 23.70 12.06 358 20.7 - WEI CORRECTED 0. 141.3 6 1.944 13000. 23.76 350.6 .06 封:

B.5 <u>Sample Input Data (Cont.</u>)

		La Conc.	
-4.13 15.17 33.	23.61 352.5	WET CORRE 143.2 1.917	CTED 5.5
1645. -3.64	KUN 74A - 13000, 23,61	WF1 COKRHC 143.4 1.917	55
1667 -4.66 15.37 33	HUN 75A - 13000. 23.54 399.3	WFT CORREC 144.6 1.904	S.5
1602. -2.81 11.91 33.	401.3 HIJN 75A - 13000, 23.54 399.3 RUN 76A - 13000, 23.67 452.1 RUN 77A - W 13000, 23.62 452.8 RUN 78A - W 13000, 23.62 452.8 RUN 78A - W 13000, 23.62 452.8	VFT CORREC 142.6 1.930	TFD 5.5
1552) -4.53 15.40 35	13000. 23.62 452.8	FI CORKEC 143.8 1.917	5.5
2389 18.17 12.14 33	13000. 24.21 348.8	ET CORRECT 193.4 1.442	7.4
-18.22 12.02	24,21 351,7	ET COKRECI 193.2 1.441	TFD 7.4
19.63	24.14 399.9		6,5
		T CORRECT 196.5 1.420	
2541 -20.07 15.35 33. TEST HI 2498. -17.6 12.24 33 TEST DI	JN 82A - W 13000, 24,14 451,7	ET CURREC! 194.8 1.434	"ED 7,5
33 TEST RU 2492 -17.7 15.16 33.	IN 83A - WE 13000. 24.06 149.9	CORRECTE 195 1,427	.D 7.5

8-23

8.6 Sample Output Data

MODEL 35 ENGINE INLET LIP ANTI-ICE ANALYSIS - 12 N'CLOCK PUSITION

TEST RUN 104 - DKY CORRECTED

		<u> </u>		
		F T		
NI	22	n Si	*CL	คา
	26.84	253.00	12*0060.	13000.00
SS=	LEADING-EDGE RADIUS LIP DIAMETER Sturbaulter Suprace	- - - - - - - - - - - - - - - - - - -	DRAG FOLARCD=0.0225+0.0506*CL*CL	WEIGHT 12

DWWIN= 0.0 K=0.000 DRBH= 0.0 HPH= 59.6

B-24

8.6 Sample Output Data (Cont.)

MODEL 35 FAGINE INLET LIP ANTI-ICF ANALYSIS - 12 D'CLOCK POSITION

TEST RUN 69A - WET CORRECTED

			,	
		En En		
	22	SIN	tor tot	Lu Lu
53.77 0.058	26.84	253.00	0500*CL*CL	13000.00
NACELLE LENGTH THICKNESS-TO-LFLCTH RATIO LEADING-FDCE ADDINS	LIP DIAMETER Streamuise Sherace	ATED AREA	DRAG PDLAK CD=0.0225+0.	WEIGHT 13

ALT VE	VEL AMB	PERC	~	L WC	œ		EVAP	a A
(FT) (KI	(KTAS) (F)	Z	TEMP DIA (F) (MIC)) HU	EXT (M)		RATE (PPH)	EVAP
"NIS	0.000 DMWIH=	PC= 1.00	EFF=0.627 124 DRBH=	TSF= 2.4	8°69 808	43.6		
=NIS	0.500 DMWIH=	PC= 0.97 3.8 K=0.2	FFE=0.698 296 DRBH=	TSF= 4.3=	95 °1 HPH=	43.2	,	·
# N 1 9	1.000 DMWIH=	PC=-0.80 2.8 K=0.1	EFF=0.445 38 DRBH=	TSF= 6.2	91.4 HPH=	22.2		
#NIS	1.500 DM#IH=	PC=-1.47 1.9 K=0.2	EFF=0.897 290 DRBH=	15F= 5.7=	97.3 HPH=	40,3		•
SINE	2.000 DMMIH=	PC=-1.30 1.1 K=0.2	EFF=0.609 09 0RAH=	т SF = 5 • 4	77.1 HPH=	48.9		
=NIS	2.500 DAWIH=	PC=-0.94 0.5 K=0.1	EFF=0.317 06 DRBH=	TSF= 5 • 4	53.4 HPH=	54.7		
=N1S	3.000 DMwIH=	PC=-0.81 0.1 K=0.1	EFF=0_326 20 DRBH=	TSF= 4.8	51°7 HPH=	61.7		
3280. 2	232. 4.	0. 15.16 401.	401. 21.	0.760	0.760 20.60 14.49	14.49	9,66	67.

9.66 67. 4.63 0.122

B-25

RUNPK RATF (PPH)

	0	131	150	[9]	170	120	133	136	47	ردا 73	133	149	126	183	502		125	40 	165	149	172	115	[5]	175	186	19/	140	158 166	80	187 206	135	151 159	178	502
	S = 3 PRED M	24	141	22	55	2/13	28	26	50	46 63													_										186	
	AT 27													-																				•
	- 2.5 ME	•																													_		181	
ទ	PRED	143	160	180	180	5°2	149											τ.						_	-								192	
Position	- 2.0 MEAS	173	197 197	212	224	142	179	187	501	230	179	195	227	239	257	169	180	196	225	216	230	168	159	182	198	226	152	156	161	195	146	162 170	186	217
'clock	PRED	167	185 190	208	211	158	175	177	204	402	194	214	240	252	278	174	178	200	226	223	236	174	166	581	209	833 733	153	176	195	197	151	171	195	222
- 6 0	1.5 1.5	200	213	243	258	101	20)	219	236	250	209	224	258	274	291		216	233	265	239	190	203	154	176	193	219	144	120	194	190	141	157	179	207
iction	ERATURE S = PRED	199	227	245	253 979	192	210	217	242	272	216	233 250	271	279	304	103 209	219	240	271 271	244	193 106	208 208	159	180	201	224	147	168 169	188	189 215	143	163 166	186 185	212
re Predi	IN TEMP NEAS	227	242	273	289	222	235	249	267	301	230	247	285	1 M M	322	230	250	269	306	201	165	193	165	187	202	229	155	172	1961	202	148	163 170	196	218
Temperature	$\frac{SKIN}{S = 1}$	230	263 263	280	294	228	243	257	2/8	312	236-	251 273	291	80	327	240	256	275	88 88	205	168	197	165	186	207	231 231	156	1/1	198	199 225	149	168 171	161	219
Skin Ten	0.5 MEAS	196	215	245	258	195	213	217	239	265	209	222 236	255	266	285	601	209	231	257 257	171	149	163	161	184	201	230	154	172	196	201	148	165 171	194	217
Run	PRED =	198	216 226	244	252	194	211	219	242	248	202	220	256 256	261	287	207	215	236	242	173	150	165	164	185	206 206	530 530	155	175	197	198 224	148	167 170	190	217
of Dry	0.0 MEAS	166	1 81 161	205	212	159	176	180	002	224	167	189	217	223	245	14/	170	161	512 712	151	140	147	166	190	206	235 235	160	1/8	201	205 226	152	168	191	221
Summary	PRED -	165	183 188	207	502	159	11	179	202	203	166	185	216	215	242	170	173	1 61	219	151	140	147	166 184	188	209	233	157	180	200	201 228	150	173	193 194	221
-1-2	AMB TEMP (°F)	123	22	51	91	g	8 8		<	N M	6 1		-	7	- : - :	រដ	ភុះ	5-5	រដុ		77	0	9 2	19	16	19	e1 e	- -	 ,		-53	121	7 7	-23
able (BLEE TEMP	(ന	401 321	66 E	449 451	352	352	66E	Į.	453	351		\$ 8	450	453	350	401	401 421	452	4 03	352	350	360	4	399 AFO	448	88 8	8 5	398	84 7	351	19 19	4 20 333	450
1-4	BLEED RATE (LB/MIN)	12.0	14.9	15.0	12.1	12.1	15.1	12.2	0.01	12.0	11.9	14.9	15.5	12.0	15.0	15.2	12.1	14.9	14.8	11.8	0.21	12.2	12.0	12.0	15.2	15.2	12.0	12.0	15.0	14.9	12.2	12.2	14.8 12.0	15.0
	VEL (KTAS)		236 231	236	235 236	232	233	233	4 22	570 570	143	142	142	143	142	198	196	512	191	232	235	232	234 23	234	234 235	235	232 231	231	233	231	195	195	1 61 961	196
IX C	TITUDE (FT)	3195	31 8 1 3189	3171	3123	3135	3160	3160	4215	3187	1756	1740 1748	1738	1740	1740	2816	2794	2786	2741	3270	3241 1322	3264	3112	001	3084	100	3119 1109	3115	3162	1139	2565	2555	2545 2571	2276
APPENDIX	RUN ALT	ł																					' .				•						568 578 2	

<u>-1</u>

Ç-1

fable E-2 Summary of Dry Run Skin Temperature Prediction - 9 o'clock Position

5-2

XPPENDJX

C-2

1 1	
13.4 13.6 13.4 <td< th=""><th>13.1 13.1</th></td<>	13.1 13.1
150 151 153 154 155 154 156 151 154 156 155 154 156 <td>1 1</td>	1 1
163 174 181 194 155 154 105 175 155 <td>163 174 174 181 194 155 174 181 194 155 154 105 155 156 114 116 114 116 114 116 114 116 114 116 114 116 115 116 114 116 115 116 114 116</td>	163 174 174 181 194 155 174 181 194 155 154 105 155 156 114 116 114 116 114 116 114 116 114 116 114 116 115 116 114 116 115 116 114 116
174 174 181 194 181 194 181 194 181 194 181 194 186 110 110 200 204 204 194 195 194 194 185 184 110 116 211 216 186 171 116 186 196 196 196 196 213 216 186 196 196 196 196 196 196 213 214 234 233 166 186 196 196 213 206 174 186 186 196 196 214 136 186 186 186 196 100 216 137 236 236 236 196 196 216 136 136 136 136 136 136 216 136 136 136 136 136 136 <td>174 174 181 194 155 154 105 155 154 105 156 95 174 174 181 194 155 156</td>	174 174 181 194 155 154 105 155 154 105 156 95 174 174 181 194 155 156
1/4 181 190 194 155 142 MAX PED PAX PED PAX <td>17.4 181 194 15. 15.4 10.6 15.4 10.6 15.4 10.6 15.4 10.6 15.4 10.6 15</td>	17.4 181 194 15. 15.4 10.6 15.4 10.6 15.4 10.6 15.4 10.6 15.4 10.6 15
Table Table <th< td=""><td>7.20 7.30 7.40 <th7.40< th=""> 7.40 7.40 <th7< td=""></th7<></th7.40<></td></th<>	7.20 7.30 7.40 <th7.40< th=""> 7.40 7.40 <th7< td=""></th7<></th7.40<>
Number of the state	NAS PRID MAS PRID MA
PRED MEAS MEAS <th< td=""><td>PRED MAX PAED MAX PAED 152 154 154 156 154 156 155 151 154 156 154 156</td></th<>	PRED MAX PAED MAX PAED 152 154 154 156 154 156 155 151 154 156 154 156
MEAS Phill 1.42 0.0 1.42 0.0 1.54 0.0 1.55 0.0 1.56	MKAS PEID MEAS PEID <th< td=""></th<>
PFED PFED 0.0 0.0 0.0	PED PED PED 0.0 0.8
A A A A A A A A A A A A A A A A A A A	MAS MAS 88 1108 28 28 200 28 28 200 28 <t< td=""></t<>
	20 8885555555555555555555555555555555555

Table C-3 Sumary of Dry Rin Skin Temperature Prediction - 12 (

D RIGHTAN

C-3

14	54	22	5	92 8	23	19	5 P	22	2	Ę		1	76	86		5	<u>s</u> :	3 2	58 ž	2	2	83	40	ins.	54	2	i i	\$	23	3 9 9	65 74	
	53	33	3	3 ig	÷Ŧ	99	47 74	22	63	3	ದೆ ಸಿ	44	41	22	: =	1	52	: ~	6.9 74	-	99	:=	52	:8	2	G	23	2	25	2 4	38 47	
2 - 2 MI H - 2	-9	19	9 2	X 2	£9	69	22	22	5	20	2 n	E	87	33		t T	ي ئ	35	222	2	12	88	6 3	80	3, Z	22	25	5	22	25	6 5 76	
1																			49	-										28		•
H AT	11	22	61	0 4	76	82	a 5	53	10	5	16	. S	93	20	9	1	2 :	28	38		21	28	, 56 8	87	41	:=:	£ 2	2	22		64 74	
110 H									-					-					 : :::::::::::::::::::::::::::::::	-	<u>6</u> 2	67	52	:5	23	2	22	2	22	ແຂ	25 26	
																					~	~ •	బం	3 √	~ *	ت د	- -		~ ~	22 25	و ہ	
																			0110													
PERATURA ST	00 76 17 95																		8 8 8											51 15 61 23		
		:=	-	22	÷ <u>-</u>	Ĩ.				Ξ			-	-		. <u>2</u>	-	= =	~~~	•	.~.			u ur			~				~~	
E E	66	33	115	112	5 00	001	16		22	2	£ a	ୢୢୢୢୄ	3	101	22	66	2;	2 %	823	3	9 0	65	2:	82	50	5	65 62	(Z)	22	22	88	
U : M A	8,	52	16	101	83	8 1	66 (C	29	100	2	92 88	8	96	112	35	2	23	28	23	3	2	22	83	68	52	22	8,2	8	≍3	8 2	4 9 59	
•	96	102	112	110	616	101	60 .	2 <u>5</u>	116	ž	65 X	201	ğ	116	: 2	6	3	26	225	2	80	23	33	<u>جع</u>	28	323	68 G	5	23	52 20	68 79	
MEAL	"	78	83	1	89	2	29	22	£	62	23	32	74	27	` ≁	5	3	85	22	5	26	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88	85	202	3£3	82	33	- 4	2 2	53	
	38	5	1 00	83	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3	61 61	77	102	8	68 A	82	8	105	82	2	8	ធ ង	22	:	8 5	7 X	66	105	82	88	*5		68 78	د 8	86	
¥ E E E E	i		•	•						,		• •					•	• •		•					00		00	00	ু হ	్రెక	00	
 RUNBA (IN ⁷ /	65.	. s.	89.	s;	9	55.	·5.	22	÷	÷.	- 4	2	Ŧ	æ.	i2	9	2.5	29	3.2	2	19.	ខុន	35	ř.	ŝċ	.8	នុះ	•	x G	5.5	-25 -15	
PER	•	ł.							•		'								28.8		6	h 🛥	~ 0	N	<u>ه</u> م				~ •	~ •	• •	
																															•	
EVAP Filt	و.0 و		10.4	.	• • •	6.9	6.9		11.2	ې د	•	- - -	4	~	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.6	70	1.1		5	- 6. 9	9.0	11.9	9 9 9	10. 10.	9.7	10.3	-~ -~	1.51 3.06	~~~ • • •	
Level B/Hg		12	5.	. 18	;3;	. 76	.67	187	28.	2	5 F		.78	83	65	.82	3:	2.8	28.82	2										38		
>	32	ເຂ າ ຕ	33	6 2 8	38 7 m	. 22 i	8°°	2.0	38	; ;	44	7	4	-	23	នេ	33	2.2		2	J 29	5 5 n n		55 • •	3 28	982 977	38 78 78	98) 19	23	33	33	
RE									•	0.0	0 0 N N	~	2.0			0.0	~	~			4.4		9		9.4	9.4	94		~~	2.0	~~	
y J	8		88.	28	32	.763	151.	29. 29.	3.	J.		8	0.6.1	1.917	Ē	3	2	1 2	292.		ğ	568. 568.	888	. 1	ž:	.763	022.	5	1.420	1.427	1.427	
	2:	29	8	2	:2		25	32	:2	2	22	12	2	22	: 2	2	2	22	~~	:	19		2	22	22	52	22	32	22	~~	22	
語日	2:	22	2	2:	•	~	- - -	• •	• ••	7	77	, ș	?	n e		នុះ	ខ្	; ;		, [.]	91	23	12:	::		- ^4	~ °	P	<u>8</u> 7	5-5-	22	
BE	352		8	33		35	83	5	3	351	S. 4	ន្ត	3	1 53	2	8	795	¥3	44	ele.	35	21	8		3	1 9	5	15 15	5	88	33	
R EEO RATE L B/HIN)	8	13	8	2,2	18	2	នុះ	29	3	8	28	ŝ	16.	9	18	3	r Fi			alla	o.	o,		~ 0	 .	<u>, 0</u>	ود	, N			00	
. –	21	12	ŝ	2:	2	5	23	22	1	2	2=	1	Ξ	S.S.	12	2	<u>s</u> :	12	22	le 10	12	22	121	22	22		22	12	22	11	22	
ĔĔ	231	53	235	ຂະ	32	1:2	22	35	12	E	23	E	Ξ	1	[]	5	161	Ë Z	222	1	22	ສຸຂ	123	33	2	35	22	32	25	561	29	
DE E	32.06	8 X 8 X	3259	3222	i Să	292	<u>6</u> 2:		1626	1631	31	3	3	225	23.85	2112		2492	3199	This	ş				2316) [] []	555		2519	555	522	ı
₹) 50																								·		•					32	
	• • ••		•	- - - -	F 40	•	-	•~	· ~	~ 1	~ ~	~		~ ^			-	4 (1)		-	2	22	13	22	3	33	2:			72	==	

7

Table C-4 Summary of Met Aun Shan Lungerature Prediction 6.0'clock [031110

APPENCIA C

C-4

																											÷								
	• •	\$ C	19-	5	22	? ≈	ŝ	40	4	24	3	42	÷,	3	25	32	5	20	£ 1	4	80	64	68	11	2 2	3	56.	- - 	ç;9	28	: Z	41	τ 2 6	33	10
1	: :	4 4	45	3	10	-	,×	÷.	ţ.	5 4 0 3	2	ħ	2	7	2	:::	=	Ξ;	55	22	66 55	×	61	89	82	17	E.	22	55	99 (24	22	2 9 9 9	47	63
4		53	69	<u>.</u>	82	2 🖓	: 23	5.5	7		1	1	99	3:	2.2	: ?	41	42	4	23	105	61	72	63	:5	88	102	23	99	85	23	44	4 4 8 4	19	N0
		33	25	i z z	2 J	2 X	46	7	25	\$7	5	4)	4 0		2 a2	18	18	25	×₽	3	6	4 2	68	2:	t a	5	8	53	67	2:	: 3	40	2 8	57	с 3
		₹ 2	44	+ -	170	17	E.	ХQ	2	001	12	16	16	29	116	5	64	2	62	84	2	62	. 89	8	: ;	¢.∜	101	ę 3	3	æ:	28	66.	24	57	5 H 9
		e I	(1-7	÷.	i i i	3	11	2	ž	₹ ≆	7	23		7.5	101	49	43	ۍ ۲	22	ï	C8	ę	. 11	2		2	3	52	12	52	C 8	4	4 S	33	82
		20	16	5		74	¥.	83	53	3 3	2	82 82	8	201	128	49	20	80	83	36	5	66	23	6	2 %	22	68 58	s 5 2	62	75	52	92 92	9 69	49	209
ERATU 2522		35	16	<u></u>	5.8	22	83	98 88	6	501 70	ŝ	ŝ	3	6	115 1	3	64	73	23	3	3	٩,	20	1	e :	8	£	22	22	78	C 78	42	η η 44 η 6	19	
LEND LEND		22	75,	2	Èà	è é	22	5	83	n ¥	9	74	23	99	ž ž		46	- 59	\$;	69	85	~	19	19	25	17	2:	83	61	895	22	28	<u> </u>	45	; 2
12		: 2	z	; ;	a a	6.6	1	4	E	70	5	20	99 99		18	¥	42	47	23	12	3	9	.9	5	ς a	52	88	69	:9	22	:2	22	38	3	32
		66	63	2:			3	62	2	5 X	3	56	65	22	22	22	2	21	# ?	12	5	ŝ	3	23	۲ کر کر	4	23	53	65	2:	. 87	2:	2 4	33	39
		8	3	3	5 9	22	5	08 08	83	83	1	18	~ 5	Êä	ŧ¥	85	58	2:	e::	3		20	80	38 2	23	: 2	8	<u>ع</u>	8	88	88	5	? %	23	¢ ۳
0.0	위 회	85	5	33	ŝĘ	? 5	56	5:	5	802	4 5	3	23	2	33		52	22	۶ X	4	30	8	20	22	* a	; 2	98 88	82	22	22	: 2	33	× 8	8 3 8	83
	21	ć £	82	7	53	27	5	82	23	23	22	ເຄ	<u>د</u> ۽	5 0	6		9	6	٤£	8	23	6	8	38	23	56	[0]	2 8	8 8	3 6	101	28	32	68 18	53
(11) (11)		•••		۰.	• •	•	•	•	•	. ,		•	ĸ	•	• •	•	,	F	•••	•	1	•	,	•			• •	00	0	00	0	• ²	5	8,	, o
RUNBACK (IN ² /FT)		22	61.	2:		~	61.	2	. :	29	50	.18	<u>.</u>	97		2	ŝ	. 22	22	~	8	ç.	.21	9.7	27	2	s:	38.	61.	<u>:</u> 2	6	លុះ		ຸ	12
PER	割 :	1 2 2 3 3	3	8 C	23	? : ?	48	\$:	2,3	2	15.	2	2:	5.5	38	9	•		2,5	2	20	2	Ŧ	53	۲ 2	8	69	63	Ş.	23	; 2	21	12	<u>6</u> 2	29
EVAP RATE		8.01	7.31	10.01	3.4	5.0	6. 3	6. A	8.9	10.78	3.13	4 .67			5	2.23	2.23	54. X	3.95	6.00	11.53		6.40	8.46	10.55	9.66	13.03	1.53	7.02	9.32 8.46	8	2.57	3.35	6. 4	6.53
ATE ATE		. 68	4.69	27.	25	24.4	4.49	**		25.4	1.03	0.98	33	88	9.1	5:25	5.46		285	5.38	14.52 11	3	4.84	22	22	1.71	69.4						8		
	छ - त -		 			-		3		_	~	Ň,	~ ~	~~	~	~	Č I		~~~	~		•				~			~					~~~ ,	
ST.	~	• •	-			-	4.6				~	~		20	0. ~	\$.0 2	0 ¢) C 	~~~	~			4			.6					4	200	~	0 0	5.0
3		28	8	2		3	. 763	. 757		.765	J.	1.917	2	2	. 917	ĩ	Ē	5	i i	-63	22		Š.	268. 268	888	.895	8. X	2	.763	200		024	2	36	1
Deg alla		9 9	2			2	2	2:	32	12	2	23	52	1	2	2	~ 2		2	2	22	;	19		2	2	\$:	នេ	23	22	ភោ	2	2	2 2	2
] :	22	2:	22	; =		•••	—	•	•~	7	7 -	•	17	ņ	; ;	25	ļŖ	1	Ş.		F	9	22	:2	2	* -	•	•	70	9	ខ្លុះ	ភ្	12-	2
	2 E	15	<u>8</u> ;		(¥	352	352	8	55	3	155	3	; %	23	3	S.	ž	365	3	23	ş3	ble.	Š	<u> </u>	:3	15	151 151	15	Ş	ş Ş	151	ក្តទ្	8	83	13
BLEED RATE	8	52	=;	RS	22	8	1	3:	2	2	8	28	27	16	3	* !	ġa	i X	2	.		valla	o	ہ ۔	ė	-	o -	• • •	o,		~			o a	. 9
	74	12		•••									:2	=	2	2:	22		2	2:	22	not.a	2	25	:2	2	5	12	2	<u> </u>	1	22	=	32	5
THE STREET	-													1	•						22	-8	22	22	12	12	X 2	12	2	ទន	2	88	. <u>.</u>	55	101
ALTITUDE					2831	R.X	2	ŝ		15x				ğ	1522		Ş	152				This	900					11	111	ŝŠ	2		2		2822
1	13	13	2	13	3	3	67A	13	12	ž	2		Į	ž	ALL	2;		E	2	5	[]	Ĩ	8		3			5							5
	.1								•							•		٠.	'						4		-				1				

S-S

Table C-5 Summary of Net. Run Shin Tengerature Prediction - 9 (1'click Position

D NIGHTA

Ċ-5

S = 2 5 5 5 = 5661 - 20 5 5 = 00000																	36 48 93 106			•		•					46 72 54 67 54 82	
5 = 2.0		82 28	96	113	128	78	62	94 90	EI	83	6	001	118	62 62	7 ×	22	67 87 83 71	5	69	125	. 83	85	19	58	88 50	£33	8 2 8 8 2 8 8 2 8	
- 	A H	58 26	16	01	120	88 88	83	6 1	i.	83	90 16	102	128	59	70	62	92 2 4	54	46 56	55	28 28 89	47		50	51 20	58 58 58	52 38 78 61 23 78	
 N TEMPERATURE	~																57 94 53 63										3 4 4 3 4 4 9 0 0	
SKIN SKIN	à.)																25 79 53 56										18 53 18 51 23 61	
- 2 - 0 0						'											35 91 50 74										54 54 68 78 88 78 89	
~	PRE														027 75		0 '		- 93	88	105						8 8 9 6 6 9 6 6 9	20
RUNBACK			1	9. EI .	1.	.23 81	61.	21.	10.	61:	.18	91.	21.	.25	្តភ្	ເລ	ຂື້ສ					12.2		9].	કુર	225	5.53 5.688 5.688	3
EVAP PER RATE CENT	~	6.42 8.56 5.6															6.82 27 11.53 79										4.47 19 4.47 18 6.38 25	
r INP INTE		14.73	14.69	14.70	14.53	14.42		63 91	14.52	21.03	21.02	21.06	21.10	25.52 25.46	25.60	25.58	25.38	14.60	14.84	14.62	14.71	14.52	14.45	14.49	14.55	22.48 22.48	22.5 22.5	
SPRA	~		.6.		4.63	5.5	4.63	3.1		0 0 ~ ^	, o , o , o	0 0 ~~~		2.0 2.0	200	2.0	0.5		4.63	10	1.5	4.63				~~~	0.0	
3	7	<u>ğ</u>	68		88	202	. 35	82. 280	18	E	16	22	36	ËË	33	3	22		8	83	23	25	2	23	1.420	1.427	1.63	
	-	•													_			•										
010	E	9	2	9 81	•	2	2	22	:2	22	52	22	2	22	22		ສຸສະ	•	61	22		22	ವ			· .	నన	1
	5 5	18 18	21 21	17 18	8	21	3	7	5		53 17		2 2 2 3	-18 24 1	-20 24	12	8	•	16 19 19 19	22	14	121	.2:	-0	? Ŗ	ភុគុត	7 9 8	1
RLEED AND TENP TENP		352 18 18 18	12 12 12	452 17 18	452 18	22 - 22 - 25	400 12 12	401 4 21	452 2 21	351 -3 24	53 77 7	399 -5 24 467 -1 24	453 -5 24	349 -18 24 1 352 -18 24	400 -20 24	452 -18 24		lable.	350 16 19 350 16 19	22	14	121	.2:	-0	? Ŗ	ភុគុត		t
		352 18 18 18	12 12 12	452 17 18	452 18	22 - 22 - 25	400 12 12	401 4 21	452 2 21	351 -3 24	53 77 7	399 -5 24 467 -1 24	453 -5 24	349 -18 24 1 352 -18 24	400 -20 24	452 -18 24	8	ereilable.	0.0	91 11 1009	451 14 18	352 1 21	401	1- 10 1	451 -0	22 22 24 24 24 24 24 24 24 24 24 24 24 2	7 9 8	1
VEL BATE TENP TENP	LIN (TT) (TT) (MIN/81) AND	12.09 352 18 18 18 15.16 341 17 18	12.11 400 15 18	12.10 452 17 18	11.35 452 18	12.02 352 1 21 15.17 352 2 21	12:03 400 3 21	15.16 401 4 21	14.93 452 2 21	12.06 351 -3 24	11.90 401 4 24	15.37 399 -5 24	15.40 453 -5 24	12.14 349 -18 24 1 12.02 352 -18 24	12.04 400 -20 24 15 35 397 -20 24	12.24 452 -18 24		ot available.	12.0	12.1 399 14 18 15.0 400 13 14	12.1 451 14 18 15.0 451 14 18	12.1 352 1 21 15.1 351 1 21	12.0 401 2 21	12.0 400 -1	15.2 451 -0 12.1 351 -20	15.1 350 -21 11.9 400 -21	450 -16 449 -20	1
ALTITUDE VEL RATE TEPP TEPP	(FT) KIAS (LB/MIN) ("F) ("HIC)	206 231 12.09 352 16 16 2066 234 15.16 351 17 18	1295 235 12.11 400 15 18	3222 233 13.30 379 1/ 18 3222 233 12.10 452 1/ 18	2831 235 11.35 452 18	12 1 255 201 112 157 157 157 157 157 157 157 157 157 157	2297 233 12:03 400 3 21	1260 232 15.16 401 4 21	3291 233 14.93 452 2	1637 141 12.06 351 -3 24 1	1645 143 11.90 401 -4 24	1667 145 15.37 399 -5 24 1667 141 11 01 457 -1 24	1552 144 15.40 453 -5 24	2369 193 12.14 349 -18 24 3 2365 193 12.02 352 -18 24 3	- 2413 195 12.04 400 -20 24 2541 197 15 35 397 -20 24	24.00 195 12.24 452 -18 24		Interest and the statistic and a second statistic second statistic second statistics and statistics and second statis	2010 222 12.0	2051 212 12.1 399 14 18 2117 234 15.0 400 13 16	0069 233 12.1 451 14 18 3141 234 15.0 451 14 18	3152 231 12.1 352 1 21	3137 231 12.0 401 2 21	3055 ZZ9 15.0 401 -1 3092 231 12.0 450 0	2547 196 12.1 351 -20 2547 196 12.1 351 -20	2539 195 15.1 350 -21 2543 195 11.9 400 -21 2513 195 11.9 400 -21	12.0 450 -18 15.0 449 -20	

Table C-6 Summary of Met Run Skin Temperature Prediction - 120'clock Position

APPENDIX C

REFERENCES

1.	Bowden, D.T., et. al.: "Engineering Summary of Airframe Icing Technical Data". Technical Report ADS-4, Federal Aviation Administration, March 1964.
2.	Eshbach, O.W. and Souders, M.: "Handbook of Engineering Fundamentals". Third Edition, Wiley and Sons, New York, 1974.
3.	Baumeister, T.: "Standard Handbook for Mechanical Engineers". 7th Edition, McGraw-Hill, New York, 1966.
4.	Langmuir, I. and Blodgett, K.: "A Mathematical Investigation of Water Droplet Trajectories". AAFTR 5418, Feb. 19, 1946.
5.	neel, C.G.: "A Procedure for the Design of Air-Heated Ice Prevention". NACA TN 3130, 1954.
6.	Gray. V.H.: "Simple Graphical Solution on Heat-Transfer and Evaporation from Surface Heated to Prevent Icing". NACA TN 2799, 1952.
7.	Gelder, F.P., et. al.: "Icing Protection for a Turbojet Transport Airplane: Heating Requirements, Methods of Protection, and Performance Penalties". NACA TN 2866, 1953.
8.	"SAE Aerospace Applied Thermodynamics Manual". Second Edition, Society of Automotive Engineers, Inc., New York, Oct. 1969.

BIBLIOGRAPHY

- Kline, D.B.: "Investigation of Meteorological Conditions Associated with Aircraft Icing in Layer-Type Clouds for 1947-48 Winter". NACA TN 1793, 1949.
- 2. Jones, A.R. and Lewis, W.: "Recommended Values of Meteorological Factors to be Considered in the Design of Aircraft Ice Prevention Equipment". NACA TN 1855, 1949.
- Kline, D.B. and Walker, J.A.: "Meteorological Analysis of Icing Conditions Encountered in Low-Altitude Stratiform Clouds". NACA TN 2306, 1951.
- Hacker, P.T. and Dorsch, R.G.: "A Summary of Meteorological Conditions Associated with Aircraft Icing and a Proposed Method of Selecting Design Criteria for Ice Protection Equipment". NACA TN 2569, 1951.
- 5. Bergrun, N.R. and Lewis, W.: "A Probability Analysis of the Meteorological Factors Conducive to Aircraft Icing in the United States". NACA TN 2738, 1952.
- Airworthiness Standards: "Transport Category Airplanes, Appendix C". Federal Aviation Regulations, Part 25, Federal Aviation Administration.
- 7. Sogin, H.H.: "A Design Manual for Thermal Anti-Icing". Wright Air Development Center, TR-54-313, 1954.
- 8. Kutty, T.M.: "A Comprehensive Approach to Icing Certification". SAE Paper No. 750507, Business Aircraft Meeting, April 1975.
- 9. Bergrun, N.R.: "A Method for Numerically Calculating the Area and Distribution of Water Impingement on the Leading Edge of an Airfoil in a Cloud". NACA TN 1397, 1947.
- 10. Dorsch, R.G. and Brun, R.J.: "A Method of Determining Cloud-Droplet Impingement on Swept Wings". NACA TN 2931, 1953.
- Gelder, T.F.; Smyers, W.H. and Von Glahn, V.H.: "Experimental Droplet Impingement on Several Two-Dimensional Airfoils with Thickness Ratios of 6 to 16 Percent". NACA TN 3839, 1956.
- Tribus, Myron: "Modern Icing Technology". Lecture Notes, Project M 992-E, Airesearch and Development Command, USAF Contract AF 18(600)-51, E.O. No. 462 Br-1, January, 1952.
- 13. Kutty, T.M.: "Gates Learjet Models 35/36 Engine Inlet Anti-Icing Analysis". Gates Learjet Corp. Report No. 26-PR-09, September, 1974.

BIBLIOGRAPHY (Cont.)

- 14. Anon: "Aircraft Ice Protection". Department of Transportation, FAA, Advisory Circular No. 20-73, April, 1971.
- Neel, Carr B.: "The Design of Air-Heated Thermal Ice-Prevention Systems". NACA Lecture No. 7, Univ. Michigan. Airplane Icing Information Course. (Unpublished Report)